30 research outputs found

    Exploiting Spatio-Temporal Coherence for Video Object Detection in Robotics

    Get PDF
    This paper proposes a method to enhance video object detection for indoor environments in robotics. Concretely, it exploits knowledge about the camera motion between frames to propagate previously detected objects to successive frames. The proposal is rooted in the concepts of planar homography to propose regions of interest where to find objects, and recursive Bayesian filtering to integrate observations over time. The proposal is evaluated on six virtual, indoor environments, accounting for the detection of nine object classes over a total of ∼ 7k frames. Results show that our proposal improves the recall and the F1-score by a factor of 1.41 and 1.27, respectively, as well as it achieves a significant reduction of the object categorization entropy (58.8%) when compared to a two-stage video object detection method used as baseline, at the cost of small time overheads (120 ms) and precision loss (0.92).</p

    Computational Intelligence for Modeling, Control, Optimization, Forecasting and Diagnostics in Photovoltaic Applications

    Get PDF
    This book is a Special Issue Reprint edited by Prof. Massimo Vitelli and Dr. Luigi Costanzo. It contains original research articles covering, but not limited to, the following topics: maximum power point tracking techniques; forecasting techniques; sizing and optimization of PV components and systems; PV modeling; reconfiguration algorithms; fault diagnosis; mismatching detection; decision processes for grid operators

    Motion-capture-based hand gesture recognition for computing and control

    Get PDF
    This dissertation focuses on the study and development of algorithms that enable the analysis and recognition of hand gestures in a motion capture environment. Central to this work is the study of unlabeled point sets in a more abstract sense. Evaluations of proposed methods focus on examining their generalization to users not encountered during system training. In an initial exploratory study, we compare various classification algorithms based upon multiple interpretations and feature transformations of point sets, including those based upon aggregate features (e.g. mean) and a pseudo-rasterization of the capture space. We find aggregate feature classifiers to be balanced across multiple users but relatively limited in maximum achievable accuracy. Certain classifiers based upon the pseudo-rasterization performed best among tested classification algorithms. We follow this study with targeted examinations of certain subproblems. For the first subproblem, we introduce the a fortiori expectation-maximization (AFEM) algorithm for computing the parameters of a distribution from which unlabeled, correlated point sets are presumed to be generated. Each unlabeled point is assumed to correspond to a target with independent probability of appearance but correlated positions. We propose replacing the expectation phase of the algorithm with a Kalman filter modified within a Bayesian framework to account for the unknown point labels which manifest as uncertain measurement matrices. We also propose a mechanism to reorder the measurements in order to improve parameter estimates. In addition, we use a state-of-the-art Markov chain Monte Carlo sampler to efficiently sample measurement matrices. In the process, we indirectly propose a constrained k-means clustering algorithm. Simulations verify the utility of AFEM against a traditional expectation-maximization algorithm in a variety of scenarios. In the second subproblem, we consider the application of positive definite kernels and the earth mover\u27s distance (END) to our work. Positive definite kernels are an important tool in machine learning that enable efficient solutions to otherwise difficult or intractable problems by implicitly linearizing the problem geometry. We develop a set-theoretic interpretation of ENID and propose earth mover\u27s intersection (EMI). a positive definite analog to ENID. We offer proof of EMD\u27s negative definiteness and provide necessary and sufficient conditions for ENID to be conditionally negative definite, including approximations that guarantee negative definiteness. In particular, we show that ENID is related to various min-like kernels. We also present a positive definite preserving transformation that can be applied to any kernel and can be used to derive positive definite EMD-based kernels, and we show that the Jaccard index is simply the result of this transformation applied to set intersection. Finally, we evaluate kernels based on EMI and the proposed transformation versus ENID in various computer vision tasks and show that END is generally inferior even with indefinite kernel techniques. Finally, we apply deep learning to our problem. We propose neural network architectures for hand posture and gesture recognition from unlabeled marker sets in a coordinate system local to the hand. As a means of ensuring data integrity, we also propose an extended Kalman filter for tracking the rigid pattern of markers on which the local coordinate system is based. We consider fixed- and variable-size architectures including convolutional and recurrent neural networks that accept unlabeled marker input. We also consider a data-driven approach to labeling markers with a neural network and a collection of Kalman filters. Experimental evaluations with posture and gesture datasets show promising results for the proposed architectures with unlabeled markers, which outperform the alternative data-driven labeling method

    27th Annual Computational Neuroscience Meeting (CNS*2018): Part One

    Get PDF

    Proceedings of the Fourth International Workshop on Mathematical Foundations of Computational Anatomy - Geometrical and Statistical Methods for Biological Shape Variability Modeling (MFCA 2013), Nagoya, Japan

    Get PDF
    International audienceComputational anatomy is an emerging discipline at the interface of geometry, statistics and image analysis which aims at modeling and analyzing the biological shape of tissues and organs. The goal is to estimate representative organ anatomies across diseases, populations, species or ages, to model the organ development across time (growth or aging), to establish their variability, and to correlate this variability information with other functional, genetic or structural information. The Mathematical Foundations of Computational Anatomy (MFCA) workshop aims at fostering the interactions between the mathematical community around shapes and the MICCAI community in view of computational anatomy applications. It targets more particularly researchers investigating the combination of statistical and geometrical aspects in the modeling of the variability of biological shapes. The workshop is a forum for the exchange of the theoretical ideas and aims at being a source of inspiration for new methodological developments in computational anatomy. A special emphasis is put on theoretical developments, applications and results being welcomed as illustrations. Following the first edition of this workshop in 2006, second edition in New-York in 2008, the third edition in Toronto in 2011, the forth edition was held in Nagoya Japan on September 22 2013
    corecore