198 research outputs found

    Significant Subgraph Mining with Multiple Testing Correction

    Full text link
    The problem of finding itemsets that are statistically significantly enriched in a class of transactions is complicated by the need to correct for multiple hypothesis testing. Pruning untestable hypotheses was recently proposed as a strategy for this task of significant itemset mining. It was shown to lead to greater statistical power, the discovery of more truly significant itemsets, than the standard Bonferroni correction on real-world datasets. An open question, however, is whether this strategy of excluding untestable hypotheses also leads to greater statistical power in subgraph mining, in which the number of hypotheses is much larger than in itemset mining. Here we answer this question by an empirical investigation on eight popular graph benchmark datasets. We propose a new efficient search strategy, which always returns the same solution as the state-of-the-art approach and is approximately two orders of magnitude faster. Moreover, we exploit the dependence between subgraphs by considering the effective number of tests and thereby further increase the statistical power.Comment: 18 pages, 5 figure, accepted to the 2015 SIAM International Conference on Data Mining (SDM15

    Using Answer Set Programming for pattern mining

    Get PDF
    Serial pattern mining consists in extracting the frequent sequential patterns from a unique sequence of itemsets. This paper explores the ability of a declarative language, such as Answer Set Programming (ASP), to solve this issue efficiently. We propose several ASP implementations of the frequent sequential pattern mining task: a non-incremental and an incremental resolution. The results show that the incremental resolution is more efficient than the non-incremental one, but both ASP programs are less efficient than dedicated algorithms. Nonetheless, this approach can be seen as a first step toward a generic framework for sequential pattern mining with constraints.Comment: Intelligence Artificielle Fondamentale (2014

    Mining Frequent Graph Patterns with Differential Privacy

    Full text link
    Discovering frequent graph patterns in a graph database offers valuable information in a variety of applications. However, if the graph dataset contains sensitive data of individuals such as mobile phone-call graphs and web-click graphs, releasing discovered frequent patterns may present a threat to the privacy of individuals. {\em Differential privacy} has recently emerged as the {\em de facto} standard for private data analysis due to its provable privacy guarantee. In this paper we propose the first differentially private algorithm for mining frequent graph patterns. We first show that previous techniques on differentially private discovery of frequent {\em itemsets} cannot apply in mining frequent graph patterns due to the inherent complexity of handling structural information in graphs. We then address this challenge by proposing a Markov Chain Monte Carlo (MCMC) sampling based algorithm. Unlike previous work on frequent itemset mining, our techniques do not rely on the output of a non-private mining algorithm. Instead, we observe that both frequent graph pattern mining and the guarantee of differential privacy can be unified into an MCMC sampling framework. In addition, we establish the privacy and utility guarantee of our algorithm and propose an efficient neighboring pattern counting technique as well. Experimental results show that the proposed algorithm is able to output frequent patterns with good precision

    Algorithms for Extracting Frequent Episodes in the Process of Temporal Data Mining

    Get PDF
    An important aspect in the data mining process is the discovery of patterns having a great influence on the studied problem. The purpose of this paper is to study the frequent episodes data mining through the use of parallel pattern discovery algorithms. Parallel pattern discovery algorithms offer better performance and scalability, so they are of a great interest for the data mining research community. In the following, there will be highlighted some parallel and distributed frequent pattern mining algorithms on various platforms and it will also be presented a comparative study of their main features. The study takes into account the new possibilities that arise along with the emerging novel Compute Unified Device Architecture from the latest generation of graphics processing units. Based on their high performance, low cost and the increasing number of features offered, GPU processors are viable solutions for an optimal implementation of frequent pattern mining algorithmsFrequent Pattern Mining, Parallel Computing, Dynamic Load Balancing, Temporal Data Mining, CUDA, GPU, Fermi, Thread

    Hybrid ASP-based Approach to Pattern Mining

    Full text link
    Detecting small sets of relevant patterns from a given dataset is a central challenge in data mining. The relevance of a pattern is based on user-provided criteria; typically, all patterns that satisfy certain criteria are considered relevant. Rule-based languages like Answer Set Programming (ASP) seem well-suited for specifying such criteria in a form of constraints. Although progress has been made, on the one hand, on solving individual mining problems and, on the other hand, developing generic mining systems, the existing methods either focus on scalability or on generality. In this paper we make steps towards combining local (frequency, size, cost) and global (various condensed representations like maximal, closed, skyline) constraints in a generic and efficient way. We present a hybrid approach for itemset, sequence and graph mining which exploits dedicated highly optimized mining systems to detect frequent patterns and then filters the results using declarative ASP. To further demonstrate the generic nature of our hybrid framework we apply it to a problem of approximately tiling a database. Experiments on real-world datasets show the effectiveness of the proposed method and computational gains for itemset, sequence and graph mining, as well as approximate tiling. Under consideration in Theory and Practice of Logic Programming (TPLP).Comment: 29 pages, 7 figures, 5 table

    Knowledge discovery in data streams

    Full text link
    Knowing what to do with the massive amount of data collected has always been an ongoing issue for many organizations. While data mining has been touted to be the solution, it has failed to deliver the impact despite its successes in many areas. One reason is that data mining algorithms were not designed for the real world, i.e., they usually assume a static view of the data and a stable execution environment where resources are abundant. The reality however is that data are constantly changing and the execution environment is dynamic. Hence, it becomes difficult for data mining to truly deliver timely and relevant results. Recently, the processing of stream data has received many attention. What is interesting is that the methodology to design stream-based algorithms may well be the solution to the above problem. In this entry, we discuss this issue and present an overview of recent works
    • 

    corecore