39 research outputs found

    A word image coding technique and its applications in information retrieval from imaged documents

    Get PDF
    Master'sMASTER OF SCIENC

    A framework for ancient and machine-printed manuscripts categorization

    Get PDF
    Document image understanding (DIU) has attracted a lot of attention and became an of active fields of research. Although, the ultimate goal of DIU is extracting textual information of a document image, many steps are involved in a such a process such as categorization, segmentation and layout analysis. All of these steps are needed in order to obtain an accurate result from character recognition or word recognition of a document image. One of the important steps in DIU is document image categorization (DIC) that is needed in many situations such as document image written or printed in more than one script, font or language. This step provides useful information for recognition system and helps in reducing its error by allowing to incorporate a category-specific Optical Character Recognition (OCR) system or word recognition (WR) system. This research focuses on the problem of DIC in different categories of scripts, styles and languages and establishes a framework for flexible representation and feature extraction that can be adapted to many DIC problem. The current methods for DIC have many limitations and drawbacks that restrict the practical usage of these methods. We proposed an efficient framework for categorization of document image based on patch representation and Non-negative Matrix Factorization (NMF). This framework is flexible and can be adapted to different categorization problem. Many methods exist for script identification of document image but few of them addressed the problem in handwritten manuscripts and they have many limitations and drawbacks. Therefore, our first goal is to introduce a novel method for script identification of ancient manuscripts. The proposed method is based on patch representation in which the patches are extracted using skeleton map of a document images. This representation overcomes the limitation of the current methods about the fixed level of layout. The proposed feature extraction scheme based on Projective Non-negative Matrix Factorization (PNMF) is robust against noise and handwriting variation and can be used for different scripts. The proposed method has higher performance compared to state of the art methods and can be applied to different levels of layout. The current methods for font (style) identification are mostly proposed to be applied on machine-printed document image and many of them can only be used for a specific level of layout. Therefore, we proposed new method for font and style identification of printed and handwritten manuscripts based on patch representation and Non-negative Matrix Tri-Factorization (NMTF). The images are represented by overlapping patches obtained from the foreground pixels. The position of these patches are set based on skeleton map to reduce the number of patches. Non-Negative Matrix Tri-Factorization is used to learn bases from each fonts (style) and then these bases are used to classify a new image based on minimum representation error. The proposed method can easily be extended to new fonts as the bases for each font are learned separately from the other fonts. This method is tested on two datasets of machine-printed and ancient manuscript and the results confirmed its performance compared to the state of the art methods. Finally, we proposed a novel method for language identification of printed and handwritten manuscripts based on patch representation and Non-negative Matrix Tri-Factorization (NMTF). The current methods for language identification are based on textual data obtained by OCR engine or images data through coding and comparing with textual data. The OCR based method needs lots of processing and the current image based method are not applicable to cursive scripts such as Arabic. In this work we introduced a new method for language identification of machine-printed and handwritten manuscripts based on patch representation and NMTF. The patch representation provides the component of the Arabic script (letters) that can not be extracted simply by segmentation methods. Then NMTF is used for dictionary learning and generating codebooks that will be used to represent document image with a histogram. The proposed method is tested on two datasets of machine-printed and handwritten manuscripts and compared to n-gram features (text-based), texture features and codebook features (imagebased) to validate the performance. The above proposed methods are robust against variation in handwritings, changes in the font (handwriting style) and presence of degradation and are flexible that can be used to various levels of layout (from a textline to paragraph). The methods in this research have been tested on datasets of handwritten and machine-printed manuscripts and compared to state-of-the-art methods. All of the evaluations show the efficiency, robustness and flexibility of the proposed methods for categorization of document image. As mentioned before the proposed strategies provide a framework for efficient and flexible representation and feature extraction for document image categorization. This frame work can be applied to different levels of layout, the information from different levels of layout can be merged and mixed and this framework can be extended to more complex situations and different tasks

    A Font Search Engine for Large Font Databases

    Get PDF
    A search engine for font recognition is presented and evaluated. The intended usage is the search in very large font databases. The input to the search engine is an image of a text line, and the output is the name of the font used when rendering the text. After pre-processing and segmentation of the input image, a local approach is used, where features are calculated for individual characters. The method is based on eigenimages calculated from edge filtered character images, which enables compact feature vectors that can be computed rapidly. In this study the database contains 2763 different fonts for the English alphabet. To resemble a real life situation, the proposed method is evaluated with printed and scanned text lines and character images. Our evaluation shows that for 99.1% of the queries, the correct font name can be found within the five best matches

    Text-detection and -recognition from natural images

    Get PDF
    Text detection and recognition from images could have numerous functional applications for document analysis, such as assistance for visually impaired people; recognition of vehicle license plates; evaluation of articles containing tables, street signs, maps, and diagrams; keyword-based image exploration; document retrieval; recognition of parts within industrial automation; content-based extraction; object recognition; address block location; and text-based video indexing. This research exploited the advantages of artificial intelligence (AI) to detect and recognise text from natural images. Machine learning and deep learning were used to accomplish this task.In this research, we conducted an in-depth literature review on the current detection and recognition methods used by researchers to identify the existing challenges, wherein the differences in text resulting from disparity in alignment, style, size, and orientation combined with low image contrast and a complex background make automatic text extraction a considerably challenging and problematic task. Therefore, the state-of-the-art suggested approaches obtain low detection rates (often less than 80%) and recognition rates (often less than 60%). This has led to the development of new approaches. The aim of the study was to develop a robust text detection and recognition method from natural images with high accuracy and recall, which would be used as the target of the experiments. This method could detect all the text in the scene images, despite certain specific features associated with the text pattern. Furthermore, we aimed to find a solution to the two main problems concerning arbitrarily shaped text (horizontal, multi-oriented, and curved text) detection and recognition in a low-resolution scene and with various scales and of different sizes.In this research, we propose a methodology to handle the problem of text detection by using novel combination and selection features to deal with the classification algorithms of the text/non-text regions. The text-region candidates were extracted from the grey-scale images by using the MSER technique. A machine learning-based method was then applied to refine and validate the initial detection. The effectiveness of the features based on the aspect ratio, GLCM, LBP, and HOG descriptors was investigated. The text-region classifiers of MLP, SVM, and RF were trained using selections of these features and their combinations. The publicly available datasets ICDAR 2003 and ICDAR 2011 were used to evaluate the proposed method. This method achieved the state-of-the-art performance by using machine learning methodologies on both databases, and the improvements were significant in terms of Precision, Recall, and F-measure. The F-measure for ICDAR 2003 and ICDAR 2011 was 81% and 84%, respectively. The results showed that the use of a suitable feature combination and selection approach could significantly increase the accuracy of the algorithms.A new dataset has been proposed to fill the gap of character-level annotation and the availability of text in different orientations and of curved text. The proposed dataset was created particularly for deep learning methods which require a massive completed and varying range of training data. The proposed dataset includes 2,100 images annotated at the character and word levels to obtain 38,500 samples of English characters and 12,500 words. Furthermore, an augmentation tool has been proposed to support the proposed dataset. The missing of object detection augmentation tool encroach to proposed tool which has the ability to update the position of bounding boxes after applying transformations on images. This technique helps to increase the number of samples in the dataset and reduce the time of annotations where no annotation is required. The final part of the thesis presents a novel approach for text spotting, which is a new framework for an end-to-end character detection and recognition system designed using an improved SSD convolutional neural network, wherein layers are added to the SSD networks and the aspect ratio of the characters is considered because it is different from that of the other objects. Compared with the other methods considered, the proposed method could detect and recognise characters by training the end-to-end model completely. The performance of the proposed method was better on the proposed dataset; it was 90.34. Furthermore, the F-measure of the method’s accuracy on ICDAR 2015, ICDAR 2013, and SVT was 84.5, 91.9, and 54.8, respectively. On ICDAR13, the method achieved the second-best accuracy. The proposed method could spot text in arbitrarily shaped (horizontal, oriented, and curved) scene text.</div

    Analyse d’images de documents patrimoniaux : une approche structurelle à base de texture

    Get PDF
    Over the last few years, there has been tremendous growth in digitizing collections of cultural heritage documents. Thus, many challenges and open issues have been raised, such as information retrieval in digital libraries or analyzing page content of historical books. Recently, an important need has emerged which consists in designing a computer-aided characterization and categorization tool, able to index or group historical digitized book pages according to several criteria, mainly the layout structure and/or typographic/graphical characteristics of the historical document image content. Thus, the work conducted in this thesis presents an automatic approach for characterization and categorization of historical book pages. The proposed approach is applicable to a large variety of ancient books. In addition, it does not assume a priori knowledge regarding document image layout and content. It is based on the use of texture and graph algorithms to provide a rich and holistic description of the layout and content of the analyzed book pages to characterize and categorize historical book pages. The categorization is based on the characterization of the digitized page content by texture, shape, geometric and topological descriptors. This characterization is represented by a structural signature. More precisely, the signature-based characterization approach consists of two main stages. The first stage is extracting homogeneous regions. Then, the second one is proposing a graph-based page signature which is based on the extracted homogeneous regions, reflecting its layout and content. Afterwards, by comparing the different obtained graph-based signatures using a graph-matching paradigm, the similarities of digitized historical book page layout and/or content can be deduced. Subsequently, book pages with similar layout and/or content can be categorized and grouped, and a table of contents/summary of the analyzed digitized historical book can be provided automatically. As a consequence, numerous signature-based applications (e.g. information retrieval in digital libraries according to several criteria, page categorization) can be implemented for managing effectively a corpus or collections of books. To illustrate the effectiveness of the proposed page signature, a detailed experimental evaluation has been conducted in this work for assessing two possible categorization applications, unsupervised page classification and page stream segmentation. In addition, the different steps of the proposed approach have been evaluated on a large variety of historical document images.Les récents progrès dans la numérisation des collections de documents patrimoniaux ont ravivé de nouveaux défis afin de garantir une conservation durable et de fournir un accès plus large aux documents anciens. En parallèle de la recherche d'information dans les bibliothèques numériques ou l'analyse du contenu des pages numérisées dans les ouvrages anciens, la caractérisation et la catégorisation des pages d'ouvrages anciens a connu récemment un regain d'intérêt. Les efforts se concentrent autant sur le développement d'outils rapides et automatiques de caractérisation et catégorisation des pages d'ouvrages anciens, capables de classer les pages d'un ouvrage numérisé en fonction de plusieurs critères, notamment la structure des mises en page et/ou les caractéristiques typographiques/graphiques du contenu de ces pages. Ainsi, dans le cadre de cette thèse, nous proposons une approche permettant la caractérisation et la catégorisation automatiques des pages d'un ouvrage ancien. L'approche proposée se veut indépendante de la structure et du contenu de l'ouvrage analysé. Le principal avantage de ce travail réside dans le fait que l'approche s'affranchit des connaissances préalables, que ce soit concernant le contenu du document ou sa structure. Elle est basée sur une analyse des descripteurs de texture et une représentation structurelle en graphe afin de fournir une description riche permettant une catégorisation à partir du contenu graphique (capturé par la texture) et des mises en page (représentées par des graphes). En effet, cette catégorisation s'appuie sur la caractérisation du contenu de la page numérisée à l'aide d'une analyse des descripteurs de texture, de forme, géométriques et topologiques. Cette caractérisation est définie à l'aide d'une représentation structurelle. Dans le détail, l'approche de catégorisation se décompose en deux étapes principales successives. La première consiste à extraire des régions homogènes. La seconde vise à proposer une signature structurelle à base de texture, sous la forme d'un graphe, construite à partir des régions homogènes extraites et reflétant la structure de la page analysée. Cette signature assure la mise en œuvre de nombreuses applications pour gérer efficacement un corpus ou des collections de livres patrimoniaux (par exemple, la recherche d'information dans les bibliothèques numériques en fonction de plusieurs critères, ou la catégorisation des pages d'un même ouvrage). En comparant les différentes signatures structurelles par le biais de la distance d'édition entre graphes, les similitudes entre les pages d'un même ouvrage en termes de leurs mises en page et/ou contenus peuvent être déduites. Ainsi de suite, les pages ayant des mises en page et/ou contenus similaires peuvent être catégorisées, et un résumé/une table des matières de l'ouvrage analysé peut être alors généré automatiquement. Pour illustrer l'efficacité de la signature proposée, une étude expérimentale détaillée a été menée dans ce travail pour évaluer deux applications possibles de catégorisation de pages d'un même ouvrage, la classification non supervisée de pages et la segmentation de flux de pages d'un même ouvrage. En outre, les différentes étapes de l'approche proposée ont donné lieu à des évaluations par le biais d'expérimentations menées sur un large corpus de documents patrimoniaux

    Advances in Character Recognition

    Get PDF
    This book presents advances in character recognition, and it consists of 12 chapters that cover wide range of topics on different aspects of character recognition. Hopefully, this book will serve as a reference source for academic research, for professionals working in the character recognition field and for all interested in the subject

    Adaptive Analysis and Processing of Structured Multilingual Documents

    Get PDF
    Digital document processing is becoming popular for application to office and library automation, bank and postal services, publishing houses and communication management. In recent years, the demand for tools capable of searching written and spoken sources of multilingual information has increased tremendously, where the bilingual dictionary is one of the important resource to provide the required information. Processing and analysis of bilingual dictionaries brought up the challenges of dealing with many different scripts, some of which are unknown to the designer. A framework is presented to adaptively analyze and process structured multilingual documents, where adaptability is applied to every step. The proposed framework involves: (1) General word-level script identification using Gabor filter. (2) Font classification using the grating cell operator. (3) General word-level style identification using Gaussian mixture model. (4) An adaptable Hindi OCR based on generalized Hausdorff image comparison. (5) Retargetable OCR with automatic training sample creation and its applications to different scripts. (6) Bootstrapping entry segmentation, which segments each page into functional entries for parsing. Experimental results working on different scripts, such as Chinese, Korean, Arabic, Devanagari, and Khmer, demonstrate that the proposed framework can save human efforts significantly by making each phase adaptive

    Pattern detection and recognition using over-complete and sparse representations

    Get PDF
    Recent research in harmonic analysis and mammalian vision systems has revealed that over-complete and sparse representations play an important role in visual information processing. The research on applying such representations to pattern recognition and detection problems has become an interesting field of study. The main contribution of this thesis is to propose two feature extraction strategies - the global strategy and the local strategy - to make use of these representations. In the global strategy, over-complete and sparse transformations are applied to the input pattern as a whole and features are extracted in the transformed domain. This strategy has been applied to the problems of rotation invariant texture classification and script identification, using the Ridgelet transform. Experimental results have shown that better performance has been achieved when compared with Gabor multi-channel filtering method and Wavelet based methods. The local strategy is divided into two stages. The first one is to analyze the local over-complete and sparse structure, where the input 2-D patterns are divided into patches and the local over-complete and sparse structure is learned from these patches using sparse approximation techniques. The second stage concerns the application of the local over-complete and sparse structure. For an object detection problem, we propose a sparsity testing technique, where a local over-complete and sparse structure is built to give sparse representations to the text patterns and non-sparse representations to other patterns. Object detection is achieved by identifying patterns that can be sparsely represented by the learned. structure. This technique has been applied. to detect texts in scene images with a recall rate of 75.23% (about 6% improvement compared with other works) and a precision rate of 67.64% (about 12% improvement). For applications like character or shape recognition, the learned over-complete and sparse structure is combined. with a Convolutional Neural Network (CNN). A second text detection method is proposed based on such a combination to further improve (about 11% higher compared with our first method based on sparsity testing) the accuracy of text detection in scene images. Finally, this method has been applied to handwritten Farsi numeral recognition, which has obtained a 99.22% recognition rate on the CENPARMI Database and a 99.5% recognition rate on the HODA Database. Meanwhile, a SVM with gradient features achieves recognition rates of 98.98% and 99.22% on these databases respectivel

    A novel image matching approach for word spotting

    Get PDF
    Word spotting has been adopted and used by various researchers as a complementary technique to Optical Character Recognition for document analysis and retrieval. The various applications of word spotting include document indexing, image retrieval and information filtering. The important factors in word spotting techniques are pre-processing, selection and extraction of proper features and image matching algorithms. The Correlation Similarity Measure (CORR) algorithm is considered to be a faster matching algorithm, originally defined for finding similarities between binary patterns. In the word spotting literature the CORR algorithm has been used successfully to compare the GSC binary features extracted from binary word images, i.e., Gradient, Structural and Concavity (GSC) features. However, the problem with this approach is that binarization of images leads to a loss of very useful information. Furthermore, before extracting GSC binary features the word images must be skew corrected and slant normalized, which is not only difficult but in some cases impossible in Arabic and modified Arabic scripts. We present a new approach in which the Correlation Similarity Measure (CORR) algorithm has been used innovatively to compare Gray-scale word images. In this approach, binarization of images, skew correction and slant normalization of word images are not required at all. The various features, i.e., projection profiles, word profiles and transitional features are extracted from the Gray-scale word images and converted into their binary equivalents, which are compared via CORR algorithm with greater speed and higher accuracy. The experiments have been conducted on Gray-scale versions of newly created handwritten databases of Pashto and Dari languages, written in modified Arabic scripts. For each of these languages we have used 4599 words relating to 21 different word classes collected from 219 writers. The average precision rates achieved for Pashto and Dari languages were 93.18 % and 93.75 %, respectively. The time taken for matching a pair of images was 1.43 milli-seconds. In addition, we will present the handwritten databases for two well-known Indo- Iranian languages, i.e., Pashto and Dari languages. These are large databases which contain six types of data, i.e., Dates, Isolated Digits, Numeral Strings, Isolated Characters, Different Words and Special Symbols, written by native speakers of the corresponding languages
    corecore