852 research outputs found

    A Parallel Algorithm for solving BSDEs - Application to the pricing and hedging of American options

    Get PDF
    We present a parallel algorithm for solving backward stochastic differential equations (BSDEs in short) which are very useful theoretic tools to deal with many financial problems ranging from option pricing option to risk management. Our algorithm based on Gobet and Labart (2010) exploits the link between BSDEs and non linear partial differential equations (PDEs in short) and hence enables to solve high dimensional non linear PDEs. In this work, we apply it to the pricing and hedging of American options in high dimensional local volatility models, which remains very computationally demanding. We have tested our algorithm up to dimension 10 on a cluster of 512 CPUs and we obtained linear speedups which proves the scalability of our implementationComment: 25 page

    Pseudo-Random Streams for Distributed and Parallel Stochastic Simulations on GP-GPU

    Get PDF
    International audienceRandom number generation is a key element of stochastic simulations. It has been widely studied for sequential applications purposes, enabling us to reliably use pseudo-random numbers in this case. Unfortunately, we cannot be so enthusiastic when dealing with parallel stochastic simulations. Many applications still neglect random stream parallelization, leading to potentially biased results. In particular parallel execution platforms, such as Graphics Processing Units (GPUs), add their constraints to those of Pseudo-Random Number Generators (PRNGs) used in parallel. This results in a situation where potential biases can be combined with performance drops when parallelization of random streams has not been carried out rigorously. Here, we propose criteria guiding the design of good GPU-enabled PRNGs. We enhance our comments with a study of the techniques aiming to parallelize random streams correctly, in the context of GPU-enabled stochastic simulations

    Pseudo-Random Number Generation on GP-GPU

    Get PDF
    International audienceRandom number generation is a key element of stochastic simulations. It has been widely studied for sequential applications purposes, enabling us to reliably use pseudo-random numbers in this case. Unfortunately, we cannot be so enthusiastic when dealing with parallel stochastic simulations. Many applications still neglect random stream parallelization, leading to potentially biased results. Particular parallel execution platforms, such as Graphics Processing Units (GPUs), add their constraints to those of Pseudo-Random Number Generators (PRNGs) used in parallel. It results in a situation where potential biases can be combined to performance drops when parallelization of random streams has not been carried out rigorously. Here, we propose criteria guiding the design of good GPU-enabled PRNGs. We enhance our comments with a study of the techniques aiming to correctly parallelize random streams, in the context of GPU-enabled stochastic simulations

    Massively Parallelized Monte Carlo Simulation and Its Applications in Finance

    Get PDF
    In this paper, we propose, develop and implement a tool that increases the computational speed of exotic derivatives pricing at a fraction of the cost of traditional methods. Our paper focuses on investigating the computing efficiencies of GPU systems. We utilize the GPU’s natural parallelization capabilities to price financial instruments. We outline our implementation, solutions to practical complications arising during implementation and how much faster GPU systems are. Each step that we explore has a significant impact on the efficiency and performance of GPU pricing. Rather than speaking in theoretical, abstract terms, we detail each step in an attempt to give the reader a clear sense of what’s going on. Efficiency is one of the pillars of financial calculations. With the volume of risk calculations mandated by prudent risk management practices, even moderate improvements in calculation efficiency can translate into material changes in trading limits or savings in regulatory capital. This can make the difference between a growing, successful trading operation or an also-ran. Unfortunately, a decent algorithm written in VBA cannot calculate option prices at the same speed as a farm of computers, particularly if we must price the trade in less than 150 milliseconds using 10 million simulation paths. Fast forward from one trade to a book of several hundred thousand trades, many of which are exotic products. Not only is it necessary to price each trade, but we must do so in each of thousands of different market scenarios in order to calculate even basic risk measures such as Greeks and Value-at-Risk (VaR). At the end of the paper, we discuss how GPUs are currently used in the industry and their various advantages, including cost, time, accuracy and calculation frequency. In addition, we discuss the implementation challenges of GPU systems and the attention to detail that is required for memory allocation

    A Parallel Algorithm for solving BSDEs - Application to the pricing and hedging of American options

    Get PDF
    We present a parallel algorithm for solving backward stochastic differential equations (BSDEs in short) which are very useful theoretic tools to deal with many financial problems ranging from option pricing option to risk management. Our algorithm based on Gobet and Labart (2010) exploits the link between BSDEs and non linear partial differential equations (PDEs in short) and hence enables to solve high dimensional non linear PDEs. In this work, we apply it to the pricing and hedging of American options in high dimensional local volatility models, which remains very computationally demanding. We have tested our algorithm up to dimension 10 on a cluster of 512 CPUs and we obtained linear speedups which proves the scalability of our implementationbackward stochastic differential equations, parallel computing, Monte- Carlo methods, non linear PDE, American options, local volatility model.
    • …
    corecore