351,080 research outputs found

    Modeling and analyzing variability for mobile information systems

    Get PDF
    Abstract. Advances in size, power, and ubiquity of computing, sensors, and communication technology made possible the development of mobile or nomadic information systems. Variability of location and system behavior is a central issue in mobile information systems, where behavior of software has to change and re-adapt to the different location settings. This paper concerns modeling and analysis of the complementary relation between software and location variability. We use graphical and formal location modeling techniques, show how to elicit and use location model in conjunction with Tropos goal-oriented framework, and introduce automated analysis on the location-based models.

    Improved polynomial chaos discretization schemes to integrate interconnects into design environments

    Get PDF
    Recently, an efficient stochastic modeling method for interconnects with inherent variability in their physical parameters was proposed, based on applying the so-called polynomial chaos (PC) approach in conjunction with a Stochastic Galerkin Method (SGM) onto telegrapher's equations. Although this approach was already very successful from a numerical point of view, the novel technique could not be conveniently integrated into SPICE-like solvers, limiting the applicability of the method. In this letter, the PC-SGM scheme for telegrapher's equations is revisited, pinpointing the origin of this inconvenience and immediately allowing to mitigate the issue. By adapting the traditional discretization of the stochastic telegrapher's equations approach, an augmented, yet deterministic, set of ordinary differential equations is obtained that turns out to be of the same type as the telegrapher's equations, and hence, the physical property of reciprocity is preserved. Consequently, it can be directly and more efficiently handled using SPICE-like solvers, which usually assume matrix symmetries. As an application example, the variability analysis of a state-of-the-art on-chip line for millimeter-wave applications is performed in a SPICE solver

    PLiMoS, a DSML to Reify Semantics Relationships: An Application to Model-Based Product Lines

    No full text
    In the Model-Based Product Line Engineering (MBPLE) context, modularization and separation of concerns have been introduced to master the inherent complexity of current developments. With the aim to exploit e ciently the variabilities and commonalities in MBPLs, the challenge of management of dependencies becomes essential (e.g. hierarchical and variability decomposition, inter-dependencies between models). However, one may observe that, in existing approaches, relational information (i) is mixed with other concerns, and (ii) lacks semantics and abstraction level identi cation. To tackle this issue, we make explicit the relationships and their semantics, and separate the relational concern into a Domain Speci c Modeling Language (DSML) called PLiMoS. Relationships are treated as rst-class entities and quali ed by operational semantics properties, organized into viewpoints to address distinct objectives, e.g. product derivation, variability consistency management, archi- tectural organization. This paper provides a description of the PLiMoS relationships de nition and its implementation in a model-based product line process using two variability languages: Feature Model and OVM. The independence with variability and core assets modeling languages provides bene ts to cope with the product line maintenance

    Situating language register across the ages, languages, modalities, and cultural aspects: Evidence from complementary methods

    Get PDF
    In the present review paper by members of the collaborative research center “Register: Language Users' Knowledge of Situational-Functional Variation” (CRC 1412), we assess the pervasiveness of register phenomena across different time periods, languages, modalities, and cultures. We define “register” as recurring variation in language use depending on the function of language and on the social situation. Informed by rich data, we aim to better understand and model the knowledge involved in situation- and function-based use of language register. In order to achieve this goal, we are using complementary methods and measures. In the review, we start by clarifying the concept of “register”, by reviewing the state of the art, and by setting out our methods and modeling goals. Against this background, we discuss three key challenges, two at the methodological level and one at the theoretical level: (1) To better uncover registers in text and spoken corpora, we propose changes to established analytical approaches. (2) To tease apart between-subject variability from the linguistic variability at issue (intra-individual situation-based register variability), we use within-subject designs and the modeling of individuals' social, language, and educational background. (3) We highlight a gap in cognitive modeling, viz. modeling the mental representations of register (processing), and present our first attempts at filling this gap. We argue that the targeted use of multiple complementary methods and measures supports investigating the pervasiveness of register phenomena and yields comprehensive insights into the cross-methodological robustness of register-related language variability. These comprehensive insights in turn provide a solid foundation for associated cognitive modeling.Peer Reviewe

    Cutting Edge PBPK Models and Analyses: Providing the Basis for Future Modeling Efforts and Bridges to Emerging Toxicology Paradigms

    Get PDF
    Physiologically based Pharmacokinetic (PBPK) models are used for predictions of internal or target dose from environmental and pharmacologic chemical exposures. Their use in human risk assessment is dependent on the nature of databases (animal or human) used to develop and test them, and includes extrapolations across species, experimental paradigms, and determination of variability of response within human populations. Integration of state-of-the science PBPK modeling with emerging computational toxicology models is critical for extrapolation between in vitro exposures, in vivo physiologic exposure, whole organism responses, and long-term health outcomes. This special issue contains papers that can provide the basis for future modeling efforts and provide bridges to emerging toxicology paradigms. In this overview paper, we present an overview of the field and introduction for these papers that includes discussions of model development, best practices, risk-assessment applications of PBPK models, and limitations and bridges of modeling approaches for future applications. Specifically, issues addressed include: (a) increased understanding of human variability of pharmacokinetics and pharmacodynamics in the population, (b) exploration of mode of action hypotheses (MOA), (c) application of biological modeling in the risk assessment of individual chemicals and chemical mixtures, and (d) identification and discussion of uncertainties in the modeling process

    The complex planetary synchronization structure of the solar system

    Full text link
    The complex planetary synchronization structure of the solar system, which since Pythagoras of Samos (ca. 570-495 BC) is known as the music of the spheres, is briefly reviewed from the Renaissance up to contemporary research. Copernicus' heliocentric model from 1543 suggested that the planets of our solar system form a kind of mutually ordered and quasi-synchronized system. From 1596 to 1619 Kepler formulated preliminary mathematical relations of approximate commensurabilities among the planets, which were later reformulated in the Titius-Bode rule (1766-1772) that successfully predicted the orbital position of Ceres and Uranus. Following the discovery of the ~11 yr sunspot cycle, in 1859 Wolf suggested that the observed solar variability could be approximately synchronized with the orbital movements of Venus, Earth, Jupiter and Saturn. Modern research have further confirmed that: (1) the planetary orbital periods can be approximately deduced from a simple system of resonant frequencies; (2) the solar system oscillates with a specific set of gravitational frequencies, and many of them (e.g. within the range between 3 yr and 100 yr) can be approximately constructed as harmonics of a base period of ~178.38 yr; (3) solar and climate records are also characterized by planetary harmonics from the monthly to the millennia time scales. This short review concludes with an emphasis on the contribution of the author's research on the empirical evidences and physical modeling of both solar and climate variability based on astronomical harmonics. The general conclusion is that the solar system works as a resonator characterized by a specific harmonic planetary structure that synchronizes also the Sun's activity and the Earth's climate.Comment: 9 figure, 19 pages. This article is a chapter of the special issue "Pattern in solar variability, their planetary origin and terrestrial impacts" available at the url: http://www.pattern-recogn-phys.net/special_issue2.htm

    Probabilistic analyses of soil consolidation by prefabricated vertical drains for single-drain and multi-drain systems

    Get PDF
    Natural soils are one of the most inherently variables in the ground. Although the significance of inherent soil variability in relation to reliable predictions of consolidation rates of soil deposits has long been realized, there have been few studies that addressed the issue of soil variability for the problem of ground improvement by prefabricated vertical drains. Despite showing valuable insights into the impact of soil spatial variability on soil consolidation by prefabricated vertical drains, available stochastic works on this subject are based on a single-drain (or unit cell) analyses. However, how the idealized unit cell solution can be a supplement to the complex multi-drain systems for spatially variable soils has never been addressed in the literature. In this study, a rigorous stochastic finite elements modeling approach that allows the true nature of soil spatial variability to be considered in a reliable and quantifiable manner, both for the single-drain and multi-drain systems, is presented. The feasibility of performing an analysis based on the unit cell concept as compared with the multi-drain analysis is assessed in a probabilistic context. It is shown that with proper input statistics representative of a particular domain of interest, both the single-drain and multi-drain analyses yield almost identical results
    corecore