5 research outputs found

    Isotropization of Quaternion-Neural-Network-Based PolSAR Adaptive Land Classification in Poincare-Sphere Parameter Space

    Get PDF
    Quaternion neural networks (QNNs) achieve high accuracy in polarimetric synthetic aperture radar classification for various observation data by working in Poincare-sphere-parameter space. The high performance arises from the good generalization characteristics realized by a QNN as 3-D rotation as well as amplification/attenuation, which is in good consistency with the isotropy in the polarization-state representation it deals with. However, there are still two anisotropic factors so far which lead to a classification capability degraded from its ideal performance. In this letter, we propose an isotropic variation vector and an isotropic activation function to improve the classification ability. Experiments demonstrate the enhancement of the QNN ability

    A Broad Class of Discrete-Time Hypercomplex-Valued Hopfield Neural Networks

    Full text link
    In this paper, we address the stability of a broad class of discrete-time hypercomplex-valued Hopfield-type neural networks. To ensure the neural networks belonging to this class always settle down at a stationary state, we introduce novel hypercomplex number systems referred to as real-part associative hypercomplex number systems. Real-part associative hypercomplex number systems generalize the well-known Cayley-Dickson algebras and real Clifford algebras and include the systems of real numbers, complex numbers, dual numbers, hyperbolic numbers, quaternions, tessarines, and octonions as particular instances. Apart from the novel hypercomplex number systems, we introduce a family of hypercomplex-valued activation functions called B\mathcal{B}-projection functions. Broadly speaking, a B\mathcal{B}-projection function projects the activation potential onto the set of all possible states of a hypercomplex-valued neuron. Using the theory presented in this paper, we confirm the stability analysis of several discrete-time hypercomplex-valued Hopfield-type neural networks from the literature. Moreover, we introduce and provide the stability analysis of a general class of Hopfield-type neural networks on Cayley-Dickson algebras
    corecore