746 research outputs found

    The virtual knife

    Get PDF

    Sparse variational regularization for visual motion estimation

    Get PDF
    The computation of visual motion is a key component in numerous computer vision tasks such as object detection, visual object tracking and activity recognition. Despite exten- sive research effort, efficient handling of motion discontinuities, occlusions and illumina- tion changes still remains elusive in visual motion estimation. The work presented in this thesis utilizes variational methods to handle the aforementioned problems because these methods allow the integration of various mathematical concepts into a single en- ergy minimization framework. This thesis applies the concepts from signal sparsity to the variational regularization for visual motion estimation. The regularization is designed in such a way that it handles motion discontinuities and can detect object occlusions

    Computed Tomography in the Modern Slaughterhouse

    Get PDF

    Temporal Interpolation via Motion Field Prediction

    Full text link
    Navigated 2D multi-slice dynamic Magnetic Resonance (MR) imaging enables high contrast 4D MR imaging during free breathing and provides in-vivo observations for treatment planning and guidance. Navigator slices are vital for retrospective stacking of 2D data slices in this method. However, they also prolong the acquisition sessions. Temporal interpolation of navigator slices an be used to reduce the number of navigator acquisitions without degrading specificity in stacking. In this work, we propose a convolutional neural network (CNN) based method for temporal interpolation via motion field prediction. The proposed formulation incorporates the prior knowledge that a motion field underlies changes in the image intensities over time. Previous approaches that interpolate directly in the intensity space are prone to produce blurry images or even remove structures in the images. Our method avoids such problems and faithfully preserves the information in the image. Further, an important advantage of our formulation is that it provides an unsupervised estimation of bi-directional motion fields. We show that these motion fields can be used to halve the number of registrations required during 4D reconstruction, thus substantially reducing the reconstruction time.Comment: Submitted to 1st Conference on Medical Imaging with Deep Learning (MIDL 2018), Amsterdam, The Netherland

    Registration and analysis of dynamic magnetic resonance image series

    Get PDF
    Cystic fibrosis (CF) is an autosomal-recessive inherited metabolic disorder that affects all organs in the human body. Patients affected with CF suffer particularly from chronic inflammation and obstruction of the airways. Through early detection, continuous monitoring methods, and new treatments, the life expectancy of patients with CF has been increased drastically in the last decades. However, continuous monitoring of the disease progression is essential for a successful treatment. The current state-of-the-art method for lung disease detection and monitoring is computed tomography (CT) or X-ray. These techniques are ill-suited for the monitoring of disease progressions because of the ionizing radiation the patient is exposed during the examination. Through the development of new magnetic resonance imaging (MRI) sequences and evaluation methods, MRI is able to measure physiological changes in the lungs. The process to create physiological maps, i.e. ventilation and perfusion maps, of the lungs using MRI can be split up into three parts: MR-acquisition, image registration, and image analysis. In this work, we present different methods for the image registration part and the image analysis part. We developed a graph-based registration method for 2D dynamic MR image series of the lungs in order to overcome the problem of sliding motion at organ boundaries. Furthermore, we developed a human-inspired learning-based registration method. Here, the registration is defined as a sequence of local transformations. The sequence-based approach combines the advantage of dense transformation models, i.e. large space of transformations, and the advantage of interpolating transformation models, i.e. smooth local transformations. We also developed a general registration framework called Autograd Image Registration Laboratory (AIRLab), which performs automatic calculation of the gradients for the registration process. This allows rapid prototyping and an easy implementation of existing registration algorithms. For the image analysis part, we developed a deep-learning approach based on gated recurrent units that are able to calculate ventilation maps with less than a third of the number of images of the current method. Automatic defect detection in the estimated MRI ventilation and perfusion maps is essential for the clinical routine to automatically evaluate the treatment progression. We developed a weakly supervised method that is able to infer a pixel-wise defect segmentation by using only a continuous global label during training. In this case, we directly use the lung clearance index (LCI) as a global weak label, without any further manual annotations. The LCI is a global measure to describe ventilation inhomogeneities of the lungs and is obtained by a multiple breath washout test

    Optical flow estimation using steered-L1 norm

    Get PDF
    Motion is a very important part of understanding the visual picture of the surrounding environment. In image processing it involves the estimation of displacements for image points in an image sequence. In this context dense optical flow estimation is concerned with the computation of pixel displacements in a sequence of images, therefore it has been used widely in the field of image processing and computer vision. A lot of research was dedicated to enable an accurate and fast motion computation in image sequences. Despite the recent advances in the computation of optical flow, there is still room for improvements and optical flow algorithms still suffer from several issues, such as motion discontinuities, occlusion handling, and robustness to illumination changes. This thesis includes an investigation for the topic of optical flow and its applications. It addresses several issues in the computation of dense optical flow and proposes solutions. Specifically, this thesis is divided into two main parts dedicated to address two main areas of interest in optical flow. In the first part, image registration using optical flow is investigated. Both local and global image registration has been used for image registration. An image registration based on an improved version of the combined Local-global method of optical flow computation is proposed. A bi-lateral filter was used in this optical flow method to improve the edge preserving performance. It is shown that image registration via this method gives more robust results compared to the local and the global optical flow methods previously investigated. The second part of this thesis encompasses the main contribution of this research which is an improved total variation L1 norm. A smoothness term is used in the optical flow energy function to regularise this function. The L1 is a plausible choice for such a term because of its performance in preserving edges, however this term is known to be isotropic and hence decreases the penalisation near motion boundaries in all directions. The proposed improved L1 (termed here as the steered-L1 norm) smoothness term demonstrates similar performance across motion boundaries but improves the penalisation performance along such boundaries
    corecore