84 research outputs found

    A curvature-adapted anisotropic surface remeshing method

    Get PDF
    We present a new method for remeshing surfaces that respect the intrinsic anisotropy of the surfaces. In particular, we use the normal informations of the surfaces, and embed the surfaces into a higher dimensional space (here we use 6d). This allow us to form an isotropic mesh optimization problem in this embedded space. Starting from an initial mesh of a surface, we optimize the mesh by improving the mesh quality measured in the embedded space. The mesh is optimized by combining common local modifications operations, i.e., edge flip, edge contraction, vertex smoothing, and vertex insertion. All operations are applied directly on the 3d surface mesh. This method results a curvature-adapted mesh of the surface. This method can be easily adapted to mesh multi-patches surfaces, i.e., containing corner singularities and sharp features. We present examples of remeshed surfaces from implicit functions and CAD models

    Differentiable Surface Triangulation

    Get PDF
    Triangle meshes remain the most popular data representation for surface geometry. This ubiquitous representation is essentially a hybrid one that decouples continuous vertex locations from the discrete topological triangulation. Unfortunately, the combinatorial nature of the triangulation prevents taking derivatives over the space of possible meshings of any given surface. As a result, to date, mesh processing and optimization techniques have been unable to truly take advantage of modular gradient descent components of modern optimization frameworks. In this work, we present a differentiable surface triangulation that enables optimization for any per-vertex or per-face differentiable objective function over the space of underlying surface triangulations. Our method builds on the result that any 2D triangulation can be achieved by a suitably perturbed weighted Delaunay triangulation. We translate this result into a computational algorithm by proposing a soft relaxation of the classical weighted Delaunay triangulation and optimizing over vertex weights and vertex locations. We extend the algorithm to 3D by decomposing shapes into developable sets and differentiably meshing each set with suitable boundary constraints. We demonstrate the efficacy of our method on various planar and surface meshes on a range of difficult-to-optimize objective functions. Our code can be found online: https://github.com/mrakotosaon/diff-surface-triangulation

    On Volumetric Shape Reconstruction from Implicit Forms

    Get PDF
    International audienceIn this paper we report on the evaluation of volumetric shape reconstruction methods that consider as input implicit forms in 3D. Many visual applications build implicit representations of shapes that are converted into explicit shape representations using geometric tools such as the Marching Cubes algorithm. This is the case with image based reconstructions that produce point clouds from which implicit functions are computed, with for instance a Poisson reconstruction approach. While the Marching Cubes method is a versatile solution with proven efficiency, alternative solutions exist with different and complementary properties that are of interest for shape modeling. In this paper, we propose a novel strategy that builds on Centroidal Voronoi Tessellations (CVTs). These tessellations provide volumetric and surface representations with strong regularities in addition to provably more accurate approximations of the implicit forms considered. In order to compare the existing strategies, we present an extensive evaluation that analyzes various properties of the main strategies for implicit to explicit volumetric conversions: Marching cubes, Delaunay refinement and CVTs, including accuracy and shape quality of the resulting shape mesh

    Anisotropic Delaunay Meshes of Surfaces

    Get PDF
    Anisotropic simplicial meshes are triangulations with elements elongated along prescribed directions. Anisotropic meshes have been shown to be well suited for interpolation of functions or solving PDEs. They can also significantly enhance the accuracy of a surface repre- sentation. Given a surface S endowed with a metric tensor field, we propose a new approach to generate an anisotropic mesh that approximates S with elements shaped according to the metric field. The algorithm relies on the well-established concepts of restricted Delaunay triangulation and Delaunay refinement and comes with theoretical guarantees. The star of each vertex in the output mesh is Delaunay for the metric attached to this vertex. Each facet has a good aspect ratio with respect to the metric specified at any of its vertices. The algorithm is easy to implement. It can mesh various types of surfaces like implicit surfaces, polyhedra or isosurfaces in 3D images. It can handle complicated geometries and topologies, and very anisotropic metric fields.Les maillages anisotropes simpliciaux sont des triangulations dont les éléments sont étirés suivant certaines directions imposées. Les maillages anisotropes sont connus pour être bien adaptés à l'interpolation de fonctions ou à la résolution d'équations aux dérivées partiellles. Ces maillages peuvent aussi améliorer notablement la précision de l'approximation d'une surface. Etant donnée une surface S, munie d'un champs de tenseurs qui définit la métrique en tout point de la surface, nous proposons un nouvel algorithme pour générer un maillage anisotrope qui approxime S par des triangles dont les formes s'adaptent à la métrique locale. L'algorithme repose sur les concepts bien établis de triangulation de Delaunay restreinte et de raffinement de Delaunay et offre des garanties théoriques. L'étoile de chaque sommet dans le maillage est formée par des triangles de Delaunay pour la métrique du sommet central. Chaque triangle a un bon rapport d'aspect dans la métrique attachée à chacun de ces sommets. L'algorithme est facile à programmer. Il permet de mailler diff'rents types de surfaces, comme des surfaces implicites, des polyèdres ou encores des isosurfaces dans des images 3D. L'algorithme peut traiter des surfaces de géométrie ou topologie complexe, il peut aussi prendre en compte des anisotropies très prononcées

    Courbure discrète : théorie et applications

    Get PDF
    International audienceThe present volume contains the proceedings of the 2013 Meeting on discrete curvature, held at CIRM, Luminy, France. The aim of this meeting was to bring together researchers from various backgrounds, ranging from mathematics to computer science, with a focus on both theory and applications. With 27 invited talks and 8 posters, the conference attracted 70 researchers from all over the world. The challenge of finding a common ground on the topic of discrete curvature was met with success, and these proceedings are a testimony of this wor

    A Constrained Resampling Strategy for Mesh Improvement

    Full text link
    In many geometry processing applications, it is required to improve an initial mesh in terms of multiple quality objectives. Despite the availability of several mesh generation algorithms with provable guarantees, such generated meshes may only satisfy a subset of the objectives. The conflicting nature of such objectives makes it challenging to establish similar guarantees for each combination, e.g., angle bounds and vertex count. In this paper, we describe a versatile strategy for mesh improvement by interpreting quality objectives as spatial constraints on resampling and develop a toolbox of local operators to improve the mesh while preserving desirable properties. Our strategy judiciously combines smoothing and transformation techniques allowing increased flexibility to practically achieve multiple objectives simultaneously.  We apply our strategy to both planar and surface meshes demonstrating how to simplify Delaunay meshes while preserving element quality, eliminate all obtuse angles in a complex mesh, and maximize the shortest edge length in a Voronoi tessellation far better than the state-of-the-art

    High-order adaptive methods for computing invariant manifolds of maps

    Get PDF
    The author presents efficient and accurate numerical methods for computing invariant manifolds of maps which arise in the study of dynamical systems. In order to decrease the number of points needed to compute a given curve/surface, he proposes using higher-order interpolation/approximation techniques from geometric modeling. He uses B´ezier curves/triangles, fundamental objects in curve/surface design, to create adaptive methods. The methods are based on tolerance conditions derived from properties of B´ezier curves/triangles. The author develops and tests the methods for an ordinary parametric curve; then he adapts these methods to invariant manifolds of planar maps. Next, he develops and tests the method for parametric surfaces and then he adapts this method to invariant manifolds of three-dimensional maps
    corecore