44 research outputs found

    The orbit rigidity matrix of a symmetric framework

    Full text link
    A number of recent papers have studied when symmetry causes frameworks on a graph to become infinitesimally flexible, or stressed, and when it has no impact. A number of other recent papers have studied special classes of frameworks on generically rigid graphs which are finite mechanisms. Here we introduce a new tool, the orbit matrix, which connects these two areas and provides a matrix representation for fully symmetric infinitesimal flexes, and fully symmetric stresses of symmetric frameworks. The orbit matrix is a true analog of the standard rigidity matrix for general frameworks, and its analysis gives important insights into questions about the flexibility and rigidity of classes of symmetric frameworks, in all dimensions. With this narrower focus on fully symmetric infinitesimal motions, comes the power to predict symmetry-preserving finite mechanisms - giving a simplified analysis which covers a wide range of the known mechanisms, and generalizes the classes of known mechanisms. This initial exploration of the properties of the orbit matrix also opens up a number of new questions and possible extensions of the previous results, including transfer of symmetry based results from Euclidean space to spherical, hyperbolic, and some other metrics with shared symmetry groups and underlying projective geometry.Comment: 41 pages, 12 figure

    Rigidity of Frameworks Supported on Surfaces

    Get PDF
    A theorem of Laman gives a combinatorial characterisation of the graphs that admit a realisation as a minimally rigid generic bar-joint framework in \bR^2. A more general theory is developed for frameworks in \bR^3 whose vertices are constrained to move on a two-dimensional smooth submanifold \M. Furthermore, when \M is a union of concentric spheres, or a union of parallel planes or a union of concentric cylinders, necessary and sufficient combinatorial conditions are obtained for the minimal rigidity of generic frameworks.Comment: Final version, 28 pages, with new figure

    Algorithms for detecting dependencies and rigid subsystems for CAD

    Get PDF
    Geometric constraint systems underly popular Computer Aided Design soft- ware. Automated approaches for detecting dependencies in a design are critical for developing robust solvers and providing informative user feedback, and we provide algorithms for two types of dependencies. First, we give a pebble game algorithm for detecting generic dependencies. Then, we focus on identifying the "special positions" of a design in which generically independent constraints become dependent. We present combinatorial algorithms for identifying subgraphs associated to factors of a particular polynomial, whose vanishing indicates a special position and resulting dependency. Further factoring in the Grassmann- Cayley algebra may allow a geometric interpretation giving conditions (e.g., "these two lines being parallel cause a dependency") determining the special position.Comment: 37 pages, 14 figures (v2 is an expanded version of an AGD'14 abstract based on v1

    Rigidity through a Projective Lens

    Get PDF
    In this paper, we offer an overview of a number of results on the static rigidity and infinitesimal rigidity of discrete structures which are embedded in projective geometric reasoning, representations, and transformations. Part I considers the fundamental case of a bar−joint framework in projective d-space and places particular emphasis on the projective invariance of infinitesimal rigidity, coning between dimensions, transfer to the spherical metric, slide joints and pure conditions for singular configurations. Part II extends the results, tools and concepts from Part I to additional types of rigid structures including body-bar, body−hinge and rod-bar frameworks, all drawing on projective representations, transformations and insights. Part III widens the lens to include the closely related cofactor matroids arising from multivariate splines, which also exhibit the projective invariance. These are another fundamental example of abstract rigidity matroids with deep analogies to rigidity. We conclude in Part IV with commentary on some nearby areas

    Equiauxetic Hinged Archimedean Tilings

    Get PDF
    There is increasing interest in two-dimensional and quasi-two-dimensional materials and metamaterials for applications in chemistry, physics and engineering. Some of these applications are driven by the possible auxetic properties of such materials. Auxetic frameworks expand along one direction when subjected to a perpendicular stretching force. An equiauxetic framework has a unique mechanism of expansion (an equiauxetic mode) where the symmetry forces a Poisson’s ratio of −1. Hinged tilings offer opportunities for the design of auxetic and equiauxetic frameworks in 2D, and generic auxetic behaviour can often be detected using a symmetry extension of the scalar counting rule for mobility of periodic body-bar systems. Hinged frameworks based on Archimedean tilings of the plane are considered here. It is known that the regular hexagonal tiling, {63}, leads to an equiauxetic framework for both single-link and double-link connections between the tiles. For single-link connections, three Archimedean tilings considered as hinged body-bar frameworks are found here to be equiauxetic: these are {3.122}, {4.6.12}, and {4.82}. For double-link connections, three Archimedean tilings considered as hinged body-bar frameworks are found to be equiauxetic: these are {34.6}, {32.4.3.4}, and {3.6.3.6}.NKFI

    Periodic Body-And-Bar Frameworks

    Get PDF
    Periodic body-and-bar frameworks are abstractions of crystalline structures made of rigid bodies connected by fixed-length bars and subject to the action of a lattice of translations. We give a Maxwell–Laman characterization for minimally rigid periodic body-and-bar frameworks in terms of their quotient graphs. As a consequence we obtain efficient polynomial time algorithms for their recognition based on matroid partition and pebble games

    Global Rigidity and Symmetry of Direction-length Frameworks

    Get PDF
    PhDA two-dimensional direction-length framework (G; p) consists of a multigraph G = (V ;D;L) whose edge set is formed of \direction" edges D and \length" edges L, and a realisation p of this graph in the plane. The edges of the framework represent geometric constraints: length edges x the distance between their endvertices, whereas direction edges specify the gradient of the line through both endvertices. In this thesis, we consider two problems for direction-length frameworks. Firstly, given a framework (G; p), is it possible to nd a di erent realisation of G which satis es the same direction and length constraints but cannot be obtained by translating (G; p) in the plane, and/or rotating (G; p) by 180 ? If no other such realisation exists, we say (G; p) is globally rigid. Our main result on this topic is a characterisation of the direction-length graphs G which are globally rigid for all \generic" realisations p (where p is generic if it is algebraically independent over Q). Secondly, we consider direction-length frameworks (G; p) which are symmetric in the plane, and ask whether we can move the framework whilst preserving both the edge constraints and the symmetry of the framework. If the only possible motions of the framework are translations, we say the framework is symmetry-forced rigid. Our main result here is for frameworks with single mirror symmetry: we characterise symmetry-forced in nitesimal rigidity for such frameworks which are as generic as possible. We also obtain partial results for frameworks with rotational or dihedral symmetry.EpSRC Studentshi

    Proceedings of the 10th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications

    Get PDF

    Petroleum Geoscience

    Get PDF
    corecore