38 research outputs found

    An efficient geometric method for incompressible hydrodynamics on the sphere

    Get PDF
    We present an efficient and highly scalable geometric method for two-dimensional ideal fluid dynamics on the sphere. The starting point is Zeitlin's finite-dimensional model of hydrodynamics. The efficiency stems from exploiting a tridiagonal splitting of the discrete spherical Laplacian combined with highly optimized, scalable numerical algorithms. For time-stepping, we adopt a recently developed isospectral integrator able to preserve the geometric structure of Euler's equations, in particular conservation of the Casimir functions. To overcome previous computational bottlenecks, we formulate the matrix Lie algebra basis through a sequence of tridiagonal eigenvalue problems, efficiently solved by well-established linear algebra libraries. The same tridiagonal splitting allows for computation of the stream matrix, involving the inverse Laplacian, for which we design an efficient parallel implementation on distributed memory systems. The resulting overall computational complexity is O(N3)\mathcal{O}(N^3) per time-step for N2N^2 spatial degrees of freedom. The dominating computational cost is matrix-matrix multiplication, carried out via the parallel library ScaLAPACK. Scaling tests show approximately linear scaling up to around 25002500 cores for the matrix size N=4096N=4096 with a computational time per time-step of about 0.550.55 seconds. These results allow for long-time simulations and the gathering of statistical quantities while simultaneously conserving the Casimir functions. We illustrate the developed algorithm for Euler's equations at the resolution N=2048N=2048

    On inverse eigenvalue problems for block Toeplitz matrices with Toeplitz blocks

    Get PDF
    We propose an algorithm for solving the inverse eigenvalue problem for real symmetric block Toeplitz matrices with symmetric Toeplitz blocks. It is based upon an algorithm which has been used before by others to solve the inverse eigenvalue problem for general real symmetric matrices and also for Toeplitz matrices. First we expose the structure of the eigenvectors of the so-called generalized centrosymmetric matrices. Then we explore the properties of the eigenvectors to derive an efficient algorithm that is able to deliver a matrix with the required structure and spectrum. We have implemented our ideas in a Matlab code. Numerical results produced with this code are included.Fundação para a Ciência e a Tecnologia (FCT

    Introduction by the Organisers

    Get PDF

    Non-Hermitian Hamiltonians in Field Theory

    Get PDF
    This thesis is centred around the role of non-Hermitian Hamiltonians in Physics both at the quantum and classical levels. In our investigations of two-level models we demonstrate [1] the phenomenon of fast transitions developed in the PT -symmetric quantum brachistochrone problem may in fact be attributed to the non-Hermiticity of evolution operator used, rather than to its invariance under PT operation. Transition probabilities are calculated for Hamiltonians which explicitly violate PT -symmetry. When it comes to Hilbert spaces of infinite dimension, starting with non-Hermitian Hamiltonians expressed as linear and quadratic combinations of the generators of the su(1; 1) Lie algebra, we construct [2] Hermitian partners in the same similarity class. Alongside, metrics with respect to which the original Hamiltonians are Hermitian are also constructed, allowing to assign meaning to a large class of non-Hermitian Hamiltonians possessing real spectra. The finding of exact results to establish the physical acceptability of other non-Hermitian models may be pursued by other means, especially if the system of interest cannot be expressed in terms of Lie algebraic elements. We also employ [3] a representation of the canonical commutation relations for position and momentum operators in terms of real-valued functions and a noncommutative product rule of differential form. Besides exact solutions, we also compute in a perturbative fashion metrics and isospectral partners for systems of physical interest. Classically, our efforts were concentrated on integrable models presenting PT - symmetry. Because the latter can also establish the reality of energies in classical systems described by Hamiltonian functions, we search for new families of nonlinear differential equations for which the presence of hidden symmetries allows one to assemble exact solutions. We use [4] the Painleve test to check whether deformations of integrable systems preserve integrability. Moreover we compare [5] integrable deformed models, which are thus likely to possess soliton solutions, to a broader class of systems presenting compacton solutions. Finally we study [6] the pole structure of certain real valued nonlinear integrable systems and establish that they behave as interacting particles whose motion can be extended to the complex plane in a PT -symmetric way

    Eigenstructure assignment in vibrating systems through active and passive approaches

    Get PDF
    The dynamic behaviour of a vibrating system depends on its eigenstructure, which consists of the eigenvalues and the eigenvectors. In fact, eigenvalues define natural frequencies, damping and settling time, while eigenvectors define the spatial distribution of vibrations, i.e. the mode shape, and also affect the sensitivity of eigenvalues with respect to the system parameters. Therefore, eigenstructure assignment, which is aimed at modifying the system in such a way that it features the desired set of eigenvalues and eigenvectors, is of fundamental importance in mechanical design. However, similarly to several other inverse problems, eigenstructure assignment is inherently challenging, due to its ill-posed nature. Despite the recent advancements of the state of the art in eigenstructure assignment, in fact, there are still important open issues. The available methods for eigenstructure assignment can be grouped into two classes: passive approaches, which consist in modifying the physical parameters of the system, and active approaches, which consist in employing actuators and sensors to exert suitable control forces as determined by a specified control law. Since both these approaches have advantages and drawbacks, it is important to choose the most appropriate strategy for the application of interest. In the present thesis, in fact, are collected passive, active, and even hybrid methods, in which active and passive techniques are concurrently employed. All the methods proposed in the thesis are aimed at solving open issues that emerged from the literature and which have applicative relevance, as well as theoretical. In contrast to several state-of-the-art methods, in fact, the proposed ones implement strategies that enable to ensure that the computed solutions are meaningful and feasible. Moreover, given that in modern mechanical design large-scale systems are increasingly common, computational issues have become a major concern and thus have been adequately addressed in the thesis. The proposed methods have been developed to be general and broadly applicable. In order to demonstrate the versatility of the methods, in the thesis it is provided an extensive numerical assessment, hence diverse test-cases have been used for validation purposes. In order to evaluate without bias the performances of the proposed methods, it has been chosen to employ well-established benchmarks from the literature. Moreover, selected experimental applications are presented in the thesis, in order to determine the capabilities of the developed methods when critically challenged. Given the focus on these issues, it is expected that the methods here proposed can constitute effective tools to improve the dynamic behaviour of vibrating systems and it is hoped that the present work could contribute to spread the use of eigenstructure assignment in the solution of engineering design problems

    Quantum complex networks

    Get PDF
    This Thesis focuses on networks of interacting quantum harmonic oscillators and in particular, on them as environments for an open quantum system, their probing via the open system, their transport properties, and their experimental implementation. Exact Gaussian dynamics of such networks is considered throughout the Thesis. Networks of interacting quantum systems have been used to model structured environments before, but most studies have considered either small or non-complex networks. Here this problem is addressed by investigating what kind of environments complex networks of quantum systems are, with specific attention paid on the presence or absence of memory effects (non-Markovianity) of the reduced open system dynamics. The probing of complex networks is considered in two different scenarios: when the probe can be coupled to any system in the network, and when it can be coupled to just one. It is shown that for identical oscillators and uniform interaction strengths between them, much can be said about the network also in the latter case. The problem of discriminating between two networks is also discussed. While state transfer between two sites in a (typically non-complex) network is a well-known problem, this Thesis considers a more general setting where multiple parties send and receive quantum information simultaneously through a quantum network. It is discussed what properties would make a network suited for efficient routing, and what is needed for a systematic search and ranking of such networks. Finding such networks complex enough to be resilient to random node or link failures would be ideal. The merit and applicability of the work described so far depends crucially on the ability to implement networks of both reasonable size and complex structure, which is something the previous proposals lack. The ability to implement several different networks with a fixed experimental setup is also highly desirable. In this Thesis the problem is solved with a proposal of a fully reconfigurable experimental realization, based on mapping the network dynamics to a multimode optical platform

    Active vibration control of rotating machines

    Get PDF
    Second order matrix equations arise in the description of real dynamical systems. Traditional modal control approaches utilise the eigenvectors of the undamped system to diagonalise the system matrices. Any remaining off-diagonal terms in the modal damping matrix are discarded. A regrettable automatic consequence of this action is the destruction of any notion of the skew-symmetry in the damping. The methods presented in this thesis use the `Lancaster Augmented Matrices' (LAMs) allowing state space representations of the second order systems. `Structure preserving transformations' (SPTs) are used to manipulate the system matrices whilst preserving the structure within the LAMs. Utilisation of the SPTs permits the diagonalisation of the system mass, damping and stiffness matrices for non-classically damped systems. Thus a modal control method is presented in this thesis which exploits this diagonalisation. The method introduces independent modal control in which a separate modal controller is designed in modal space for each individual mode or pair of modes. The modal displacements and velocities for the diagonalised systems are extracted from the physical quantities using first order SPT-based filters. Similarly the first order filters are used to translate the modal force into the physical domain. Derivation of the SPT-filters is presented together with a method by which one exploits the non-uniqueness of the diagonalising filters such that initially unstable filters are stabilised. In the context of active control of rotating machines, standard optimal controller methods enable a trade-off to be made between (weighted) mean-square vibrations and (weighted) mean-square control forces, or in the case of a machines controlled using magnetic bearings the currents injected into the magnetic bearings. One shortcoming of such controllers for magnetic bearings is that no concern is devoted to the voltages required. In practice, the voltage available imposes a strict limitation on the maximum possible rate of change of control force (force slew rate). This thesis presents a method which removes the aforementioned existing shortcomings of traditional optimal control. Case studies of realistic rotor systems are presented to illustrate the modal control and control force rate penalisation methods. The system damping matrices of the case studies contain skew-symmetric components due to gyroscopic forces typical of rotating machines. The SPT-based modal control method is used to decouple the non-classically damped equations of motion into n single degree of freedom systems. Optimal modal controllers are designed independently in the modal space such that the modal state, modal forces and modal force rates are weighted as required. The SPT-based modal control method is shown to yield superior results to the conventional notion of independent modal space control according to reasonable assessment
    corecore