382 research outputs found

    Isoperimetric Inequalities in Simplicial Complexes

    Full text link
    In graph theory there are intimate connections between the expansion properties of a graph and the spectrum of its Laplacian. In this paper we define a notion of combinatorial expansion for simplicial complexes of general dimension, and prove that similar connections exist between the combinatorial expansion of a complex, and the spectrum of the high dimensional Laplacian defined by Eckmann. In particular, we present a Cheeger-type inequality, and a high-dimensional Expander Mixing Lemma. As a corollary, using the work of Pach, we obtain a connection between spectral properties of complexes and Gromov's notion of geometric overlap. Using the work of Gunder and Wagner, we give an estimate for the combinatorial expansion and geometric overlap of random Linial-Meshulam complexes

    Ramanujan Complexes and bounded degree topological expanders

    Full text link
    Expander graphs have been a focus of attention in computer science in the last four decades. In recent years a high dimensional theory of expanders is emerging. There are several possible generalizations of the theory of expansion to simplicial complexes, among them stand out coboundary expansion and topological expanders. It is known that for every d there are unbounded degree simplicial complexes of dimension d with these properties. However, a major open problem, formulated by Gromov, is whether bounded degree high dimensional expanders, according to these definitions, exist for d >= 2. We present an explicit construction of bounded degree complexes of dimension d = 2 which are high dimensional expanders. More precisely, our main result says that the 2-skeletons of the 3-dimensional Ramanujan complexes are topological expanders. Assuming a conjecture of Serre on the congruence subgroup property, infinitely many of them are also coboundary expanders.Comment: To appear in FOCS 201

    Cheeger constants of surfaces and isoperimetric inequalities

    Full text link
    We show that the Cheeger constant of compact surfaces is bounded by a function of the area. We apply this to isoperimetric profiles of bounded genus non-compact surfaces, to show that if their isoperimetric profile grows faster than t\sqrt t, then it grows at least as fast as a linear function. This generalizes a result of Gromov for simply connected surfaces. We study the isoperimetric problem in dimension 3. We show that if the filling volume function in dimension 2 is Euclidean, while in dimension 3 is sub-Euclidean and there is a gg such that minimizers in dimension 3 have genus at most gg, then the filling function in dimension 3 is `almost' linear.Comment: 28 page

    Coboundary expanders

    Full text link
    We describe a natural topological generalization of edge expansion for graphs to regular CW complexes and prove that this property holds with high probability for certain random complexes.Comment: Version 2: significant rewrite. 18 pages, title changed, and main theorem extended to more general random complexe
    • …
    corecore