26 research outputs found

    Generalized quaternion groups with the mm-DCI property

    Full text link
    A Cayley digraph Cay(G,S) of a finite group GG with respect to a subset SS of GG is said to be a CI-digraph if for every Cayley digraph Cay(G,T) isomorphic to Cay(G,S), there exists an automorphism σ\sigma of GG such that Sσ=TS^\sigma=T. A finite group GG is said to have the mm-DCI property for some positive integer mm if all mm-valent Cayley digraphs of GG are CI-digraphs, and is said to be a DCI-group if GG has the mm-DCI property for all 1≀mâ‰€âˆŁG∣1\leq m\leq |G|. Let Q4n\mathrm{Q}_{4n} be a generalized quaternion group of order 4n4n with an integer n≄3n\geq 3, and let Q4n\mathrm{Q}_{4n} have the mm-DCI property for some 1≀m≀2n−11 \leq m\leq 2n-1. It is shown in this paper that nn is odd, and nn is not divisible by p2p^2 for any prime p≀m−1p\leq m-1. Furthermore, if n≄3n\geq 3 is a power of a prime pp, then Q4n\mathrm{Q}_{4n} has the mm-DCI property if and only if pp is odd, and either n=pn=p or 1≀m≀p1\leq m\leq p.Comment: 1

    Highly arc transitive digraphs

    Get PDF
    Unendliche, hochgradig bogentransitive Digraphen werden definiert und anhand von Beispielen vorgestellt. Die Erreichbarkeitsrelation und Eigenschaft–Z werden definiert und unter Verwendung von Knotengraden, Wachstum und anderen Eigenschaften, die von der Untersuchung von Nachkommen von Doppelstrahlen oder Automorphismengruppen herrĂŒhren, auf hochgradig bogentransitiven Digraphen untersucht. Seifters Theoreme ĂŒber hochgradig bogentransitive Digraphen mit mehr als einem Ende, seine daherrĂŒhrende Vermutung und deren sie widerlegende Gegenbeispiele werden vorgestellt. Eine Bedingung, unter der C–homogene Digraphen hochgradig bogentransitiv sind, wird angegeben und die Verbindung zwischen hochgradig bogentransitiven Digraphen und total unzusammenhĂ€ngenden, topologischen Gruppen wird erwĂ€hnt. Einige Bemerkungen ĂŒber die Vermutung von Cameron–Praeger–Wormald werden gemacht und eine verfeinerte Version vermutet. Die Eigenschaften der bekannten hochgradig bogentransitiven Digraphen werden gesammelt. Es wird festgestellt, dass einige, aber nicht alle unter ihnen Cayley–Graphen sind. Schließlich werden offen gebliebene Fragestellungen und Vermutungen zusammengefasst und neue hinzugefĂŒgt. FĂŒr die vorgestellten Lemmata, Propositionen und Theoreme sind entweder Beweise enthalten, oder Referenzen zu Beweisen werden angegeben.Infinite, highly arc transitive digraphs are defined and examples are given. The Reachability–Relation and Property-Z are defined and investigated on infinite, highly arc transitive digraphs using the valencies, spread and other properties arising from the investigation of the descendants of lines or the automorphism groups. Seifters theorems about highly arc transitive digraphs with more than one end, his conjecture on them and the counterexamples that disproved his conjecture, are given. A condition for C–homogeneous digraphs to be highly arc transitve is stated and the connection between highly arc transitive digraphs and totally disconnected, topological groups is mentioned. Some notes on the Cameron–Praeger–Wormald–Conjecture are made and a refined conjecture is stated. The properties of the known highly arc transitive digraphs are collected, some but not all of them are Cayley–graphs. Finally open questions and conjectures are stated and new ones are added. For the given lemmas, propositions and theorems either proofs or references to proofs are included

    On the Isomorphisms of Cayley Graphs of Abelian Groups

    Get PDF
    AbstractLet G be a finite group, S a subset of G\{1}, and let Cay (G,S) denote the Cayley digraph of G with respect to S. If, for any subset T of G\(1), Cay(G,S)≅Cay(G,T) implies that Sα=T for some α∈Aut(G), then S is called a CI-subset. The group G is called a CIM-group if for any minimal generating subset S of G,SâˆȘS−1 is a CI-subset. In this paper, CIM-abelian groups are characterized

    Finite 33-connected homogeneous graphs

    Full text link
    A finite graph \G is said to be {\em (G,3)(G,3)-((connected)) homogeneous} if every isomorphism between any two isomorphic (connected) subgraphs of order at most 33 extends to an automorphism g∈Gg\in G of the graph, where GG is a group of automorphisms of the graph. In 1985, Cameron and Macpherson determined all finite (G,3)(G, 3)-homogeneous graphs. In this paper, we develop a method for characterising (G,3)(G,3)-connected homogeneous graphs. It is shown that for a finite (G,3)(G,3)-connected homogeneous graph \G=(V, E), either G_v^{\G(v)} is 22--transitive or G_v^{\G(v)} is of rank 33 and \G has girth 33, and that the class of finite (G,3)(G,3)-connected homogeneous graphs is closed under taking normal quotients. This leads us to study graphs where GG is quasiprimitive on VV. We determine the possible quasiprimitive types for GG in this case and give new constructions of examples for some possible types
    corecore