58 research outputs found

    A Linear Upper Bound on the Weisfeiler-Leman Dimension of Graphs of Bounded Genus

    Get PDF
    The Weisfeiler-Leman (WL) dimension of a graph is a measure for the inherent descriptive complexity of the graph. While originally derived from a combinatorial graph isomorphism test called the Weisfeiler-Leman algorithm, the WL dimension can also be characterised in terms of the number of variables that is required to describe the graph up to isomorphism in first-order logic with counting quantifiers. It is known that the WL dimension is upper-bounded for all graphs that exclude some fixed graph as a minor [M. Grohe, 2017]. However, the bounds that can be derived from this general result are astronomic. Only recently, it was proved that the WL dimension of planar graphs is at most 3 [S. Kiefer et al., 2017]. In this paper, we prove that the WL dimension of graphs embeddable in a surface of Euler genus g is at most 4g+3. For the WL dimension of graphs embeddable in an orientable surface of Euler genus g, our approach yields an upper bound of 2g + 3

    The First Order Definability of Graphs with Separators via the Ehrenfeucht Game

    Get PDF
    We say that a first order formula Φ\Phi defines a graph GG if Φ\Phi is true on GG and false on every graph GG' non-isomorphic with GG. Let D(G)D(G) be the minimal quantifier rank of a such formula. We prove that, if GG is a tree of bounded degree or a Hamiltonian (equivalently, 2-connected) outerplanar graph, then D(G)=O(logn)D(G)=O(\log n), where nn denotes the order of GG. This bound is optimal up to a constant factor. If hh is a constant, for connected graphs with no minor KhK_h and degree O(n/logn)O(\sqrt n/\log n), we prove the bound D(G)=O(n)D(G)=O(\sqrt n). This result applies to planar graphs and, more generally, to graphs of bounded genus.Comment: 17 page

    Canonizing Graphs of Bounded Tree Width in Logspace

    Get PDF
    Graph canonization is the problem of computing a unique representative, a canon, from the isomorphism class of a given graph. This implies that two graphs are isomorphic exactly if their canons are equal. We show that graphs of bounded tree width can be canonized by logarithmic-space (logspace) algorithms. This implies that the isomorphism problem for graphs of bounded tree width can be decided in logspace. In the light of isomorphism for trees being hard for the complexity class logspace, this makes the ubiquitous class of graphs of bounded tree width one of the few classes of graphs for which the complexity of the isomorphism problem has been exactly determined.Comment: 26 page

    Canonisation and Definability for Graphs of Bounded Rank Width

    Full text link
    We prove that the combinatorial Weisfeiler-Leman algorithm of dimension (3k+4)(3k+4) is a complete isomorphism test for the class of all graphs of rank width at most kk. Rank width is a graph invariant that, similarly to tree width, measures the width of a certain style of hierarchical decomposition of graphs; it is equivalent to clique width. It was known that isomorphism of graphs of rank width kk is decidable in polynomial time (Grohe and Schweitzer, FOCS 2015), but the best previously known algorithm has a running time nf(k)n^{f(k)} for a non-elementary function ff. Our result yields an isomorphism test for graphs of rank width kk running in time nO(k)n^{O(k)}. Another consequence of our result is the first polynomial time canonisation algorithm for graphs of bounded rank width. Our second main result is that fixed-point logic with counting captures polynomial time on all graph classes of bounded rank width.Comment: 32 page

    Logarithmic Weisfeiler--Leman and Treewidth

    Full text link
    In this paper, we show that the (3k+4)(3k+4)-dimensional Weisfeiler--Leman algorithm can identify graphs of treewidth kk in O(logn)O(\log n) rounds. This improves the result of Grohe & Verbitsky (ICALP 2006), who previously established the analogous result for (4k+3)(4k+3)-dimensional Weisfeiler--Leman. In light of the equivalence between Weisfeiler--Leman and the logic FO+C\textsf{FO} + \textsf{C} (Cai, F\"urer, & Immerman, Combinatorica 1992), we obtain an improvement in the descriptive complexity for graphs of treewidth kk. Precisely, if GG is a graph of treewidth kk, then there exists a (3k+5)(3k+5)-variable formula φ\varphi in FO+C\textsf{FO} + \textsf{C} with quantifier depth O(logn)O(\log n) that identifies GG up to isomorphism

    Canonization for Bounded and Dihedral Color Classes in Choiceless Polynomial Time

    Get PDF
    In the quest for a logic capturing Ptime the next natural classes of structures to consider are those with bounded color class size. We present a canonization procedure for graphs with dihedral color classes of bounded size in the logic of Choiceless Polynomial Time (CPT), which then captures Ptime on this class of structures. This is the first result of this form for non-abelian color classes. The first step proposes a normal form which comprises a "rigid assemblage". This roughly means that the local automorphism groups form 2-injective 3-factor subdirect products. Structures with color classes of bounded size can be reduced canonization preservingly to normal form in CPT. In the second step, we show that for graphs in normal form with dihedral color classes of bounded size, the canonization problem can be solved in CPT. We also show the same statement for general ternary structures in normal form if the dihedral groups are defined over odd domains
    corecore