367 research outputs found

    Isomorphism test for digraphs with weighted edges

    Get PDF
    Colour refinement is at the heart of all the most efficient graph isomorphism software packages. In this paper we present a method for extending the applicability of refinement algorithms to directed graphs with weighted edges. We use Traces as a reference software, but the proposed solution is easily transferrable to any other refinement-based graph isomorphism tool in the literature. We substantiate the claim that the performances of the original algorithm remain substantially unchanged by showing experiments for some classes of benchmark graphs

    Oriented coloring on recursively defined digraphs

    Full text link
    Coloring is one of the most famous problems in graph theory. The coloring problem on undirected graphs has been well studied, whereas there are very few results for coloring problems on directed graphs. An oriented k-coloring of an oriented graph G=(V,A) is a partition of the vertex set V into k independent sets such that all the arcs linking two of these subsets have the same direction. The oriented chromatic number of an oriented graph G is the smallest k such that G allows an oriented k-coloring. Deciding whether an acyclic digraph allows an oriented 4-coloring is NP-hard. It follows, that finding the chromatic number of an oriented graph is an NP-hard problem. This motivates to consider the problem on oriented co-graphs. After giving several characterizations for this graph class, we show a linear time algorithm which computes an optimal oriented coloring for an oriented co-graph. We further prove how the oriented chromatic number can be computed for the disjoint union and order composition from the oriented chromatic number of the involved oriented co-graphs. It turns out that within oriented co-graphs the oriented chromatic number is equal to the length of a longest oriented path plus one. We also show that the graph isomorphism problem on oriented co-graphs can be solved in linear time.Comment: 14 page

    An Algorithmic Metatheorem for Directed Treewidth

    Full text link
    The notion of directed treewidth was introduced by Johnson, Robertson, Seymour and Thomas [Journal of Combinatorial Theory, Series B, Vol 82, 2001] as a first step towards an algorithmic metatheory for digraphs. They showed that some NP-complete properties such as Hamiltonicity can be decided in polynomial time on digraphs of constant directed treewidth. Nevertheless, despite more than one decade of intensive research, the list of hard combinatorial problems that are known to be solvable in polynomial time when restricted to digraphs of constant directed treewidth has remained scarce. In this work we enrich this list by providing for the first time an algorithmic metatheorem connecting the monadic second order logic of graphs to directed treewidth. We show that most of the known positive algorithmic results for digraphs of constant directed treewidth can be reformulated in terms of our metatheorem. Additionally, we show how to use our metatheorem to provide polynomial time algorithms for two classes of combinatorial problems that have not yet been studied in the context of directed width measures. More precisely, for each fixed k,w∈Nk,w \in \mathbb{N}, we show how to count in polynomial time on digraphs of directed treewidth ww, the number of minimum spanning strong subgraphs that are the union of kk directed paths, and the number of maximal subgraphs that are the union of kk directed paths and satisfy a given minor closed property. To prove our metatheorem we devise two technical tools which we believe to be of independent interest. First, we introduce the notion of tree-zig-zag number of a digraph, a new directed width measure that is at most a constant times directed treewidth. Second, we introduce the notion of zz-saturated tree slice language, a new formalism for the specification and manipulation of infinite sets of digraphs.Comment: 41 pages, 6 figures, Accepted to Discrete Applied Mathematic

    Computing symmetry groups of polyhedra

    Full text link
    Knowing the symmetries of a polyhedron can be very useful for the analysis of its structure as well as for practical polyhedral computations. In this note, we study symmetry groups preserving the linear, projective and combinatorial structure of a polyhedron. In each case we give algorithmic methods to compute the corresponding group and discuss some practical experiences. For practical purposes the linear symmetry group is the most important, as its computation can be directly translated into a graph automorphism problem. We indicate how to compute integral subgroups of the linear symmetry group that are used for instance in integer linear programming.Comment: 20 pages, 1 figure; containing a corrected and improved revisio

    Diagram matching for human-computer collaborative assessment

    Get PDF
    Diagrams are an important part of many assessments. When diagrams consisting of boxes joined by connectors are drawn on a computer, the resulting structures can be matched against each other to determine similarity. This paper discusses ways of doing such matching, and its application in the context of human-computer collaborative assessment. Results show that a simple heuristic process is effective in finding similarities in such diagrams. The practical usefulness of this varies in different contexts, as students often produce remarkably dissimilar diagrams
    • …
    corecore