39,106 research outputs found

    AIDA : Analytic isolation and distance-based anomaly detection algorithm

    Get PDF
    Many unsupervised anomaly detection algorithms rely on the concept of nearest neighbours to compute the anomaly scores. Such algorithms are popular because there are no assumptions about the data, making them a robust choice for unstructured datasets. However, the number (k) of nearest neighbours, which critically affects the model performance, cannot be tuned in an unsupervised setting. Hence, we propose the new and parameter-free Analytic Isolation and Distance-based Anomaly (AIDA) detection algorithm, that combines the metrics of distance with isolation. Based on AIDA, we also introduce the Tempered Isolation-based eXplanation (TIX) algorithm, which identifies the most relevant features characterizing an outlier, even in large multi-dimensional datasets, improving the overall explainability of the detection mechanism. Both AIDA and TIX are thoroughly tested and compared with state-of-the-art alternatives, proving to be useful additions to the existing set of tools in anomaly detection

    AIDA : analytic isolation and distance-based anomaly detection algorithm

    Get PDF
    Many unsupervised anomaly detection algorithms rely on the concept of nearest neighbours to compute the anomaly scores. Such algorithms are popular because there are no assumptions about the data, making them a robust choice for unstructured datasets. However, the number (k) of nearest neighbours, which critically affects the model performance, cannot be tuned in an unsupervised setting. Hence, we propose the new and parameter-free Analytic Isolation and Distance-based Anomaly (AIDA) detection algorithm, that combines the metrics of distance with isolation. Based on AIDA, we also introduce the Tempered Isolation-based eXplanation (TIX) algorithm, which identifies the most relevant features characterizing an outlier, even in large multi-dimensional datasets, improving the overall explainability of the detection mechanism. Both AIDA and TIX are thoroughly tested and compared with state-of-the-art alternatives, proving to be useful additions to the existing set of tools in anomaly detection

    OptIForest: Optimal Isolation Forest for Anomaly Detection

    Full text link
    Anomaly detection plays an increasingly important role in various fields for critical tasks such as intrusion detection in cybersecurity, financial risk detection, and human health monitoring. A variety of anomaly detection methods have been proposed, and a category based on the isolation forest mechanism stands out due to its simplicity, effectiveness, and efficiency, e.g., iForest is often employed as a state-of-the-art detector for real deployment. While the majority of isolation forests use the binary structure, a framework LSHiForest has demonstrated that the multi-fork isolation tree structure can lead to better detection performance. However, there is no theoretical work answering the fundamentally and practically important question on the optimal tree structure for an isolation forest with respect to the branching factor. In this paper, we establish a theory on isolation efficiency to answer the question and determine the optimal branching factor for an isolation tree. Based on the theoretical underpinning, we design a practical optimal isolation forest OptIForest incorporating clustering based learning to hash which enables more information to be learned from data for better isolation quality. The rationale of our approach relies on a better bias-variance trade-off achieved by bias reduction in OptIForest. Extensive experiments on a series of benchmarking datasets for comparative and ablation studies demonstrate that our approach can efficiently and robustly achieve better detection performance in general than the state-of-the-arts including the deep learning based methods.Comment: This paper has been accepted by International Joint Conference on Artificial Intelligence (IJCAI-23

    Advanced Ground Systems Maintenance Enterprise Architecture Project

    Get PDF
    The project implements an architecture for delivery of integrated health management capabilities for the 21st Century launch complex. Capabilities include anomaly detection, fault isolation, prognostics and physics-based diagnostics

    Advanced Ground Systems Maintenance Enterprise Architecture Project

    Get PDF
    The project implements an architecture for delivery of integrated health management capabilities for the 21st Century launch complex. The delivered capabilities include anomaly detection, fault isolation, prognostics and physics based diagnostics
    corecore