629 research outputs found

    Hyperspectral Remote Sensing Benchmark Database for Oil Spill Detection with an Isolation Forest-Guided Unsupervised Detector

    Full text link
    Oil spill detection has attracted increasing attention in recent years since marine oil spill accidents severely affect environments, natural resources, and the lives of coastal inhabitants. Hyperspectral remote sensing images provide rich spectral information which is beneficial for the monitoring of oil spills in complex ocean scenarios. However, most of the existing approaches are based on supervised and semi-supervised frameworks to detect oil spills from hyperspectral images (HSIs), which require a huge amount of effort to annotate a certain number of high-quality training sets. In this study, we make the first attempt to develop an unsupervised oil spill detection method based on isolation forest for HSIs. First, considering that the noise level varies among different bands, a noise variance estimation method is exploited to evaluate the noise level of different bands, and the bands corrupted by severe noise are removed. Second, kernel principal component analysis (KPCA) is employed to reduce the high dimensionality of the HSIs. Then, the probability of each pixel belonging to one of the classes of seawater and oil spills is estimated with the isolation forest, and a set of pseudo-labeled training samples is automatically produced using the clustering algorithm on the detected probability. Finally, an initial detection map can be obtained by performing the support vector machine (SVM) on the dimension-reduced data, and then, the initial detection result is further optimized with the extended random walker (ERW) model so as to improve the detection accuracy of oil spills. Experiments on airborne hyperspectral oil spill data (HOSD) created by ourselves demonstrate that the proposed method obtains superior detection performance with respect to other state-of-the-art detection approaches

    Using Isolation Forest and Alternative Data Products to Overcome Ground Truth Data Scarcity for Improved Deep Learning-based Agricultural Land Use Classification Models

    Get PDF
    High-quality labelled datasets represent a cornerstone in the development of deep learning models for land use classification. The high cost of data collection, the inherent errors introduced during data mapping efforts, the lack of local knowledge, and the spatial variability of the data hinder the development of accurate and spatially-transferable deep learning models in the context of agriculture. In this paper, we investigate the use of Isolation Forest (IF), an anomaly detection algorithm, to reduce noise in a large-scale, low-resolution alternative ground truth dataset used to train land use deep learning models. We use a modest-size, high-resolution and high-fidelity manually collected ground-truth dataset to calibrate Isolation Forest parameters and evaluate our approach, highlighting the relatively low cost of the methodology. Our data-centric methodology demonstrates the efficacy of deep learning methods coupled with IF to create mid-resolution land-use models and map products for agriculture using an alternative ground-truth dataset. Moreover, we compare our deep learning approach with a traditional algorithm used in remote sensing and evaluate the spatial transferability of the created models. Finally, we reflect upon the lessons learnt and future work

    Boosting precision crop protection towards agriculture 5.0 via machine learning and emerging technologies: A contextual review

    Get PDF
    Crop protection is a key activity for the sustainability and feasibility of agriculture in a current context of climate change, which is causing the destabilization of agricultural practices and an increase in the incidence of current or invasive pests, and a growing world population that requires guaranteeing the food supply chain and ensuring food security. In view of these events, this article provides a contextual review in six sections on the role of artificial intelligence (AI), machine learning (ML) and other emerging technologies to solve current and future challenges of crop protection. Over time, crop protection has progressed from a primitive agriculture 1.0 (Ag1.0) through various technological developments to reach a level of maturity closelyin line with Ag5.0 (section 1), which is characterized by successfully leveraging ML capacity and modern agricultural devices and machines that perceive, analyze and actuate following the main stages of precision crop protection (section 2). Section 3 presents a taxonomy of ML algorithms that support the development and implementation of precision crop protection, while section 4 analyses the scientific impact of ML on the basis of an extensive bibliometric study of >120 algorithms, outlining the most widely used ML and deep learning (DL) techniques currently applied in relevant case studies on the detection and control of crop diseases, weeds and plagues. Section 5 describes 39 emerging technologies in the fields of smart sensors and other advanced hardware devices, telecommunications, proximal and remote sensing, and AI-based robotics that will foreseeably lead the next generation of perception-based, decision-making and actuation systems for digitized, smart and real-time crop protection in a realistic Ag5.0. Finally, section 6 highlights the main conclusions and final remarks

    ECHAD: Embedding-Based Change Detection from Multivariate Time Series in Smart Grids

    Get PDF
    Smart grids are power grids where clients may actively participate in energy production, storage and distribution. Smart grid management raises several challenges, including the possible changes and evolutions in terms of energy consumption and production, that must be taken into account in order to properly regulate the energy distribution. In this context, machine learning methods can be fruitfully adopted to support the analysis and to predict the behavior of smart grids, by exploiting the large amount of streaming data generated by sensor networks. In this article, we propose a novel change detection method, called ECHAD (Embedding-based CHAnge Detection), that leverages embedding techniques, one-class learning, and a dynamic detection approach that incrementally updates the learned model to reflect the new data distribution. Our experiments show that ECHAD achieves optimal performances on synthetic data representing challenging scenarios. Moreover, a qualitative analysis of the results obtained on real data of a real power grid reveals the quality of the change detection of ECHAD. Specifically, a comparison with state-of-the-art approaches shows the ability of ECHAD in identifying additional relevant changes, not detected by competitors, avoiding false positive detections

    Matched filter stochastic background characterization for hyperspectral target detection

    Get PDF
    Algorithms exploiting hyperspectral imagery for target detection have continually evolved to provide improved detection results. Adaptive matched filters, which may be derived in many different scientific fields, can be used to locate spectral targets by modeling scene background as either structured geometric) with a set of endmembers (basis vectors) or as unstructured stochastic) with a covariance matrix. In unstructured background research, various methods of calculating the background covariance matrix have been developed, each involving either the removal of target signatures from the background model or the segmenting of image data into spatial or spectral subsets. The objective of these methods is to derive a background which matches the source of mixture interference for the detection of sub pixel targets, or matches the source of false alarms in the scene for the detection of fully resolved targets. In addition, these techniques increase the multivariate normality of the data from which the background is characterized, thus increasing adherence to the normality assumption inherent in the matched filter and ultimately improving target detection results. Such techniques for improved background characterization are widely practiced but not well documented or compared. This thesis will establish a strong theoretical foundation, describing the necessary preprocessing of hyperspectral imagery, deriving the spectral matched filter, and capturing current methods of unstructured background characterization. The extensive experimentation will allow for a comparative evaluation of several current unstructured background characterization methods as well as some new methods which improve stochastic modeling of the background. The results will show that consistent improvements over the scene-wide statistics can be achieved through spatial or spectral subsetting, and analysis of the results provides insight into the tradespaces of matching the interference, background multivariate normality and target exclusion for these techniques

    Sustainable Agriculture and Advances of Remote Sensing (Volume 2)

    Get PDF
    Agriculture, as the main source of alimentation and the most important economic activity globally, is being affected by the impacts of climate change. To maintain and increase our global food system production, to reduce biodiversity loss and preserve our natural ecosystem, new practices and technologies are required. This book focuses on the latest advances in remote sensing technology and agricultural engineering leading to the sustainable agriculture practices. Earth observation data, in situ and proxy-remote sensing data are the main source of information for monitoring and analyzing agriculture activities. Particular attention is given to earth observation satellites and the Internet of Things for data collection, to multispectral and hyperspectral data analysis using machine learning and deep learning, to WebGIS and the Internet of Things for sharing and publication of the results, among others
    • 

    corecore