659 research outputs found

    Isolating the real roots of the piecewise algebraic variety

    Get PDF
    AbstractThe piecewise algebraic variety, as a set of the common zeros of multivariate splines, is a kind of generalization of the classical algebraic variety. In this paper, we present an algorithm for isolating the zeros of the zero-dimensional piecewise algebraic variety which is primarily based on the interval zeros of univariate interval polynomials. Numerical example illustrates that the proposed algorithm is flexible

    An implementation of Sub-CAD in Maple

    Get PDF
    Cylindrical algebraic decomposition (CAD) is an important tool for the investigation of semi-algebraic sets, with applications in algebraic geometry and beyond. We have previously reported on an implementation of CAD in Maple which offers the original projection and lifting algorithm of Collins along with subsequent improvements. Here we report on new functionality: specifically the ability to build cylindrical algebraic sub-decompositions (sub-CADs) where only certain cells are returned. We have implemented algorithms to return cells of a prescribed dimensions or higher (layered {\scad}s), and an algorithm to return only those cells on which given polynomials are zero (variety {\scad}s). These offer substantial savings in output size and computation time. The code described and an introductory Maple worksheet / pdf demonstrating the full functionality of the package are freely available online at http://opus.bath.ac.uk/43911/.Comment: 9 page

    Using the Regular Chains Library to build cylindrical algebraic decompositions by projecting and lifting

    Get PDF
    Cylindrical algebraic decomposition (CAD) is an important tool, both for quantifier elimination over the reals and a range of other applications. Traditionally, a CAD is built through a process of projection and lifting to move the problem within Euclidean spaces of changing dimension. Recently, an alternative approach which first decomposes complex space using triangular decomposition before refining to real space has been introduced and implemented within the RegularChains Library of Maple. We here describe a freely available package ProjectionCAD which utilises the routines within the RegularChains Library to build CADs by projection and lifting. We detail how the projection and lifting algorithms were modified to allow this, discuss the motivation and survey the functionality of the package

    A 1-parameter family of spherical CR uniformizations of the figure eight knot complement

    Full text link
    We describe a simple fundamental domain for the holonomy group of the boundary unipotent spherical CR uniformization of the figure eight knot complement, and deduce that small deformations of that holonomy group (such that the boundary holonomy remains parabolic) also give a uniformization of the figure eight knot complement. Finally, we construct an explicit 1-parameter family of deformations of the boundary unipotent holonomy group such that the boundary holonomy is twist-parabolic. For small values of the twist of these parabolic elements, this produces a 1-parameter family of pairwise non-conjugate spherical CR uniformizations of the figure eight knot complement

    Maximally inflected real rational curves

    Get PDF
    We introduce and begin the topological study of real rational plane curves, all of whose inflection points are real. The existence of such curves is a corollary of results in the real Schubert calculus, and their study has consequences for the important Shapiro and Shapiro conjecture in the real Schubert calculus. We establish restrictions on the number of real nodes of such curves and construct curves realizing the extreme numbers of real nodes. These constructions imply the existence of real solutions to some problems in the Schubert calculus. We conclude with a discussion of maximally inflected curves of low degree.Comment: Revised with minor corrections. 37 pages with 106 .eps figures. Over 250 additional pictures on accompanying web page (See http://www.math.umass.edu/~sottile/pages/inflected/index.html

    Algorithm for connectivity queries on real algebraic curves

    Full text link
    We consider the problem of answering connectivity queries on a real algebraic curve. The curve is given as the real trace of an algebraic curve, assumed to be in generic position, and being defined by some rational parametrizations. The query points are given by a zero-dimensional parametrization. We design an algorithm which counts the number of connected components of the real curve under study, and decides which query point lie in which connected component, in time log-linear in N6N^6, where NN is the maximum of the degrees and coefficient bit-sizes of the polynomials given as input. This matches the currently best-known bound for computing the topology of real plane curves. The main novelty of this algorithm is the avoidance of the computation of the complete topology of the curve.Comment: 10 pages, 2 figure

    Existence of Solutions to the Bethe Ansatz Equations for the 1D Hubbard Model: Finite Lattice and Thermodynamic Limit

    Full text link
    In this work, we present a proof of the existence of real and ordered solutions to the generalized Bethe Ansatz equations for the one dimensional Hubbard model on a finite lattice, with periodic boundary conditions. The existence of a continuous set of solutions extending from any positive U to the limit of large interaction is also shown. This continuity property, when combined with the proof that the wavefunction obtained with the generalized Bethe Ansatz is normalizable, is relevant to the question of whether or not the solution gives us the ground state of the finite system, as suggested by Lieb and Wu. Lastly, for the absolute ground state at half-filling, we show that the solution converges to a distribution in the thermodynamic limit. This limit distribution satisfies the integral equations that led to the well known solution of the 1D Hubbard model.Comment: 18 page
    corecore