68 research outputs found

    Analysis of Ventricular Depolarisation and Repolarisation Using Registration and Machine Learning

    Get PDF
    Our understanding of cardiac diseases has greatly advanced since the advent of electrocardiography (ECG). With the increasing influx of available data in recent times, significant research efforts have been put forth to automate the study and detection of cardiac conditions. Naturally, the focus has progressed toward studying dynamic changes in ventricular depolarisation and repolarisation across serial recordings - as complex beat-to-beat changes in morphology manifest over time. Manual extraction of diagnostic and prognostic markers is a laborious task. Hence, automated and accurate methods are required to extract markers for the study of ventricular lability and detection of common diseases, such as myocardial ischemia and myocardial infarction. The aim of this thesis is to improve automated marker extraction and detection of diseases for the study of ventricular depolarisation and repolarisation lability in ECG. As such, two novel template adaptation methods capable of capturing complex beat-to-beat morphological changes are proposed for three-dimensional and two-dimensional data, respectively. The proposed three-dimensional template adaptation method provides an inhomogeneous method for transforming template vectorcardiogram (VCG) by exploiting registrationinspired parametrisation and an efficient kernel ridge regression formulation. Analysis across simulated data and clinical myocardial infarction data demonstrates state-of-the-art results. The two-dimensional template adaptation method draws from traditional registrationbased techniques and treats the ECG as a two-dimensional point set problem. Validation against previously employed simulated data and a gold-standard annotated clinical database demonstrate the highest level of performance. Subsequently, frameworks employing the proposed template adaptation techniques are developed for the automated detection of ischemic beats and myocardial infarction. Furthermore, a small study analysing ventricular repolarisation variability (VRV) in non-ischemic cardiomyopathy (CM) is considered, utilising markers of cardiac lability proposed in the development of the three-dimensional template adaptation system. In summary, this thesis highlights the necessity for custom template adaptation methods for the accurate measurement of beat-to-beat variability in cardiac data. Two novel stateof- the-art methods are proposed and extended to study myocardial ischemia, myocardial infarction and non-ischemic CM.Thesis (Ph.D.) -- University of Adelaide, School of Electrical and Electronic Engineering, 202

    Abnormal ECG search in long-term electrocardiographic recordings from an animal model of heart failure

    Get PDF
    Heart failure is one of the leading causes of death in the United States. Five million Americans suffer from heart failure. Advances in portable electrocardiogram (ECG) monitoring systems and large data storage space allow the ECG to be recorded continuously for long periods. Long-term monitoring could potentially lead to better diagnosis and treatment if the progression of heart failure could be followed. The challenge is to analyze the sheer mass of data. Manual analysis using the classical methods is impossible. In this dissertation, a framework for analysis of long-term ECG recording and methods for searching an abnormal ECG are presented.;The data used in this research were collected from an animal model of heart failure. Chronic heart failure was gradually induced in rats by aldosterone infusion and a high Na and low Mg diet. The ECG was continuously recorded during the experimental period of 11-12 weeks through radiotelemetry. The ECG leads were placed subcutaneously in lead-II configuration. In the end, there were 80 GB of data from five animals. Besides the massive amount of data, noise and artifacts also caused problems in the analysis.;The framework includes data preparation, ECG beat detection, EMG noise detection, baseline fluctuation removal, ECG template generation, feature extraction, and abnormal ECG search. The raw data was converted from its original format and stored in a database for data retrieval. The beat detection technique was improved from the original algorithm so that it was less sensitive to signal baseline jump and more sensitive to beat size variation. A method for estimating a parameter required for baseline fluctuation removal is proposed. It provides a good result on test signals. A new algorithm for EMG noise detection was developed using morphological filters and moving variance. The resulting sensitivity and specificity are 94% and 100%, respectively. A procedure for ECG template generation was proposed to capture gradual change in ECG morphology and manage the matching process if numerous ECG templates are created. RR intervals and heart rate variability parameters are extracted and plotted to display progressive changes as heart failure develops. In the abnormal ECG search, premature ventricular complexes, elevated ST segment, and split-R-wave ECG are considered. New features are extracted from ECG morphology. The Fisher linear discriminant analysis is used to classify the normal and abnormal ECG. The results provide classification rate, sensitivity, and specificity of 97.35%, 96.02%, and 98.91%, respectively

    Features Extraction from Time Series

    Get PDF
    Time series can be found in various domains like medicine, engineering, and finance. Generally speaking, a time series is a sequence of data that represents recorded values of a phenomenon over time. This thesis studies time series mining, including transformation and distance measure, anomaly or anomalies detection, clustering and remaining useful life estimation. In the course of the first mining task (transformation and distance measure), in order to increase the accuracy of distance measure between transformed series (symbolic series), we introduce a novel calculation of distance between symbols. By integrating this newly defined method to symbolic aggregate approximation and its extensions, the experimental results show this proposed method is promising. During the process of the second mining task (anomaly or anomalies detection), for the purpose of improving the accuracy of anomaly or anomalies detection, we propose a distance measure method and an anomalies detection calculation. These proposed methods, together with previous published anomaly detection methods, are applied to real ECG data selected from MIT-BIH database. The experimental results show that our proposed outperforms other methods. During the course of the third mining task (clustering), we present an automatic clustering method, called AT-means, which can automatically carry out clustering for a given time series dataset: from the calculation of global average time series to the setting of initial centres and the determination of the number of clusters. The performance of the proposed method was tested on 10 benchmark time series datasets obtained from UCR database. For comparison, the K-means method with three different conditions are also applied to the same datasets. The experimental results show the proposed method outperforms the compared K-means approaches. During the process of the fourth mining task (remaining useful life estimation), all the original data are transformed into low-dimensional space through principal components analysis. We then proposed a novel multidimensional time series distance measure method, called as multivariate time series warping distance (MTWD), for remaining useful life estimation. This whole process is tested on the CMAPSS (Commercial Modular Aero Propulsion System Simulation) datasets and the performance is compared with two existing methods. The experimental results show that the estimated remaining useful life (RUL) values are closer to real RUL values when compared with the comparison methods. Our work contributes to the time series mining by introducing novel approaches to distance measure, anomalies detection, clustering and RUL estimation. We furthermore apply our proposed methods and related methods to benchmark datasets. The experimental results show that our methods are better than previously published methods in terms of accuracy and efficiency

    Computational methods for physiological data

    Get PDF
    Thesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2009.Author is also affiliated with the MIT Dept. of Electrical Engineering and Computer Science. Cataloged from PDF version of thesis.Includes bibliographical references (p. 177-188).Large volumes of continuous waveform data are now collected in hospitals. These datasets provide an opportunity to advance medical care, by capturing rare or subtle phenomena associated with specific medical conditions, and by providing fresh insights into disease dynamics over long time scales. We describe how progress in medicine can be accelerated through the use of sophisticated computational methods for the structured analysis of large multi-patient, multi-signal datasets. We propose two new approaches, morphologic variability (MV) and physiological symbolic analysis, for the analysis of continuous long-term signals. MV studies subtle micro-level variations in the shape of physiological signals over long periods. These variations, which are often widely considered to be noise, can contain important information about the state of the underlying system. Symbolic analysis studies the macro-level information in signals by abstracting them into symbolic sequences. Converting continuous waveforms into symbolic sequences facilitates the development of efficient algorithms to discover high risk patterns and patients who are outliers in a population. We apply our methods to the clinical challenge of identifying patients at high risk of cardiovascular mortality (almost 30% of all deaths worldwide each year). When evaluated on ECG data from over 4,500 patients, high MV was strongly associated with both cardiovascular death and sudden cardiac death. MV was a better predictor of these events than other ECG-based metrics. Furthermore, these results were independent of information in echocardiography, clinical characteristics, and biomarkers.(cont.) Our symbolic analysis techniques also identified groups of patients exhibiting a varying risk of adverse outcomes. One group, with a particular set of symbolic characteristics, showed a 23 fold increased risk of death in the months following a mild heart attack, while another exhibited a 5 fold increased risk of future heart attacks.by Zeeshan Hassan Syed.Ph.D

    Wearable sensor technologies applied for post-stroke rehabilitation

    Get PDF
    Stroke is a common cerebrovascular disease that is recognized as one of the leading causes of death and ongoing disability around the globe. Stroke can lead to losses of various body functions depending on the affected area of the brain and leave significant impacts to the victim’s daily life. Post-stroke rehabilitation plays an important role in improving the life quality of stroke survivors. Properly designed rehabilitation training programs can not only prevent further functional deterioration, but also helps patients gradually regain their body functionalities. However, the delivery of rehabilitation service can be a complex and labour intensive task. In conventional rehabilitation systems, the chart-based ordinal scales are considered the dominant tools for impairment assessment and the administration of the scales primarily relies on the doctor’s manual observation. Measuring instruments such as strain gauge and force platforms can sometimes be used to collect quantitative evidence for some of the body functions such as grip strength and balance. However, the evaluation of the patients’ impairment level using ordinal scales still depend on the human interpretation of the data which can be both subjective and inefficient. The preferred scale and evaluation standard also vary among institutions across different regions which make the comparison of data difficult and sometimes unreliable. Furthermore, the intensive manual supervision and support required in rehabilitation training session limits the accessibility of the service as the regular visit to qualified hospital can be onerous for many patients and the associated cost can impose an enormous financial burden on both the government and the households. The situation can be even more challenging in developing countries due to higher growing rate of stroke population and more limited medical resources. The works presented in this thesis are focused on exploring the possibilities of integrating wearable sensor and pattern recognition techniques to improve the efficiency and the effectiveness of post-stroke rehabilitation by addressing the abovementioned issues. The study was initiated by a comprehensive literature review on the latest motion tracking technologies and non-visual based Inertia Measurement Unit (IMU) had been selected as the most suitable candidate for motion sensing in unsupervised training environment due to its low-cost and easy-to-operate characteristics. Following the design and construction of the 6-axis IMU based Body Area Network (BAN), a series of stroke patient motion data collection experiments had been conducted in conjunction with the Jiaxing 2nd Hospital Rehabilitation Centre in Zhejiang province, China. The collected motion samples were then investigated using various signal processing algorithms and pattern recognition techniques to achieve the three major objectives: automatic impairment level classification for reducing human effort involved in regular clinical assessment, single-index based limb mobility evaluation for providing objective evidence to support unified body function assessment standards, and training motion classification for enabling home or community based rehabilitation training with reduced supervision. At last, the study has been further expanded by incorporating surface Electromyography (sEMG) signal sampled during rehabilitation exercises as an alternative input to enhance accurate impairment level classification. The outcome of the investigations demonstrate that the wearable technology can play an important role within a tele-rehabilitation system by providing objective, accurate and often realtime indications of the recovery process as well as the assistance for training management

    Dynamic classifiers for neonatal brain monitoring

    Get PDF
    Brain injury due to lack of oxygen or impaired blood flow around the time of birth, may cause long term neurological dysfunction or death in severe cases. The treatments need to be initiated as soon as possible and tailored according to the nature of the injury to achieve best outcomes. The Electroencephalogram (EEG) currently provides the best insight into neurological activities. However, its interpretation presents formidable challenge for the neurophsiologists. Moreover, such expertise is not widely available particularly around the clock in a typical busy Neonatal Intensive Care Unit (NICU). Therefore, an automated computerized system for detecting and grading the severity of brain injuries could be of great help for medical staff to diagnose and then initiate on-time treatments. In this study, automated systems for detection of neonatal seizures and grading the severity of Hypoxic-Ischemic Encephalopathy (HIE) using EEG and Heart Rate (HR) signals are presented. It is well known that there is a lot of contextual and temporal information present in the EEG and HR signals if examined at longer time scale. The systems developed in the past, exploited this information either at very early stage of the system without any intelligent block or at very later stage where presence of such information is much reduced. This work has particularly focused on the development of a system that can incorporate the contextual information at the middle (classifier) level. This is achieved by using dynamic classifiers that are able to process the sequences of feature vectors rather than only one feature vector at a time

    Prediction of postoperative atrial fibrillation using the electrocardiogram: A proof of concept

    Get PDF
    Hospital patients recovering from major cardiac surgery are at high risk of postoperative atrial fibrillation (POAF), an arrhythmia which can be life-threatening. With the development of a tool to predict POAF early enough, the development of the arrhythmia could be potentially prevented using prophylactic treatments, thus reducing risks and hospital costs. To date, no reliable method suitable for autonomous clinical integration has been proposed yet. This thesis presents a study on the prediction of POAF using the electrocardiogram. A novel P-wave quality assessment tool to automatically identify high-quality P-waves was designed, and its clinical utility was assessed. Prediction of paroxysmal atrial fibrillation (AF) was performed by implementing and improving a selection of previously proposed methods. This allowed to perform a systematic comparison of those methods, and to test if their combination improved prediction of AF. Finally, prediction of POAF was tested in a clinically relevant scenario. This included studying the 48 hours preceding POAF, and automatically excluding noise-corrupted P-waves using the quality assessment tool. The P-wave quality assessment tool identified high-quality P-waves with high sensitivity (0.93) and good specificity (0.84). In addition, this tool improved the ability to predict AF, since it improved the precision of P-wave measurements. The best predictors of AF and POAF were measurements of the variability in P-wave time- and morphological features. Paroxysmal AF could be predicted with high specificity (0.93) and good sensitivity (0.82) when several predictors were combined. Furthermore, POAF could be predicted 48 hours before its onset with good sensitivity (0.74) and specificity (0.70). This leaves time for prophylactic treatments to be administered and possibly prevent POAF. Despite being promising, further work is required for these techniques to be useful in the clinical setting

    Advanced Signal Processing in Wearable Sensors for Health Monitoring

    Get PDF
    Smart, wearables devices on a miniature scale are becoming increasingly widely available, typically in the form of smart watches and other connected devices. Consequently, devices to assist in measurements such as electroencephalography (EEG), electrocardiogram (ECG), electromyography (EMG), blood pressure (BP), photoplethysmography (PPG), heart rhythm, respiration rate, apnoea, and motion detection are becoming more available, and play a significant role in healthcare monitoring. The industry is placing great emphasis on making these devices and technologies available on smart devices such as phones and watches. Such measurements are clinically and scientifically useful for real-time monitoring, long-term care, and diagnosis and therapeutic techniques. However, a pertaining issue is that recorded data are usually noisy, contain many artefacts, and are affected by external factors such as movements and physical conditions. In order to obtain accurate and meaningful indicators, the signal has to be processed and conditioned such that the measurements are accurate and free from noise and disturbances. In this context, many researchers have utilized recent technological advances in wearable sensors and signal processing to develop smart and accurate wearable devices for clinical applications. The processing and analysis of physiological signals is a key issue for these smart wearable devices. Consequently, ongoing work in this field of study includes research on filtration, quality checking, signal transformation and decomposition, feature extraction and, most recently, machine learning-based methods

    The Quality Control of Puerariae Lobatae Radix and Puerariae Thomsonii Radix

    Get PDF
    Puerariae Lobatae Radix (PLR) and Puerariae Thomsonii Radix (PTR) are traditional Chinese medicines used interchangeably in clinical practice, even though they possess significantly different chemical profiles. The aim of this thesis was to differentiate PLR from PTR using various analytical instruments coupled with chemometrics. Morphological results illustrate PLR possessed distinct macroscopic and microscopic features as compared to PTR. UPLC results reveal isoflavonoids were the major chemical constituents in both species, with the content of puerarin in PLR significantly greater than in PTR. PLS-DA models demonstrate both UPLC and HPTLC chromatographic fingerprints were effective in differentiating PLR from PTR. PLSR coupled with Raman spectra was able to predict the TPC and antioxidant capacities of PLR and PTR. The pharmacological results illustrate PLR possessed significantly greater anti-diabetic, cytoprotective and anti-cancer activities as compared to PTR. In summary, the results reveal the chemical fingerprints coupled with chemometrics was effective in differentiating PLR from PTR, and PLR was morphologically, chemically and pharmacologically different from PTR. This thesis provided further insight into the comprehensive nature of the quality control of two similar species and recommends changes to their descriptions in the pharmacopoeias. This will ultimately improve the quality, safety and efficacy of herbal products
    corecore