171 research outputs found

    PORTABLE HEART ATTACK WARNING SYSTEM BY MONITORING THE ST SEGMENT VIA SMARTPHONE ELECTROCARDIOGRAM PROCESSING

    Get PDF
    Cardiovascular disease (CVD) is the single leading cause of death in both developed and developing countries. The most deadly CVD is heart attack, which 7,900,000 Americans suffer each year, and 16% of cases are fatal. The Electrocardiogram (ECG) is the most widely adopted clinical tool to diagnose and assess the risk of CVD. Early diagnosis of heart attacks, by detecting abnormal ST segments within one hour of the onset of symptoms, is necessary for successful treatment. In clinical settings, resting ECGs are used to monitor patients automatically. However, given the sporadic nature of heart attacks, it is unlikely that the patient will be in a clinical setting at the onset of a heart attack. While Holter-based portable monitoring solutions offer 24 to 48-hour ECG recording, they lack the capability of providing any real-time feedback for the thousands of heart beats they record, which must be tediously analyzed offline.Processing ECG signals on a smartphone-based platform would unite the portability of Holter monitors and the real-time processing capability of state-of-the-art resting ECG machines to provide an assistive diagnosis for early heart attack warning. Furthermore, smartphones serve as an ideal platform for telemedicine and alert systems and have a portable form factor. To detect heart attacks via ECG processing, a real-time, accurate, context aware ST segment monitoring algorithm, based on principal component analysis and a support vector machine classifier is proposed and evaluated. Real-time feedback is provided by implementing a state-of-the-art, multilevel warning system ranging from audible notifications to text messages to points of contacts with the GPS location of the user. The smartphone test bed makes use of a novel, real-time verification system using a streaming database to analyze the strain of heart attack detection system under normal phone operation. Furthermore, the entire system is prototyped and fully functional, running on a smartphone to demonstrate the real-time, portable functionality of the platform. Experimental results show that a classification accuracy of 96% for ST segment elevation of individual beats can be achieved and all ST episodes were correctly detected during testing with the European ST database

    Effect of horror clips on the physiology of ans & heart

    Get PDF
    The current study deals with the ECG and, HRV parameter analysis to study the physiology of ANS and, the heart by taking data from 20 volunteers under the effect of horror clips. The volunteers had their ECG reading recorded under normal and, horror situations by showing them the same video clips and, at relatively the same time of the day(after dinner hours) to keep uniformity in the readings and, reduce any ambiguity that might be present. Our results showed us that the effect of HRV parameters on the physiology of heart was significant. The time series data and, the time series data using wavelet (db-6 wavelet) didn’t affect the ECG readings of horror much more than that of normal readings of the same subjects. This was also verified by t-test grouping. The results clearly show that HRV parameters affect the horror ECG readings

    Comparison between neural networks and multiple logistic regression to predict acute coronary syndrome in the emergency room

    Get PDF
    Summary Objective Patients with suspicion of acute coronary syndrome (ACS) are difficult to diagnose and they represent a very heterogeneous group. Some require immediate treatment while others, with only minor disorders, may be sent home. Detecting ACS patients using a machine learning approach would be advantageous in many situations. Methods and materials Artificial neural network (ANN) ensembles and logistic regression models were trained on data from 634 patients presenting an emergency department with chest pain. Only data immediately available at patient presentation were used, including electrocardiogram (ECG) data. The models were analyzed using receiver operating characteristics (ROC) curve analysis, calibration assessments, inter- and intra-method variations. Effective odds ratios for the ANN ensembles were compared with the odds ratios obtained from the logistic model. Results The ANN ensemble approach together with ECG data preprocessed using principal component analysis resulted in an area under the ROC curve of 80%. At the sensitivity of 95% the specificity was 41%, corresponding to a negative predictive value of 97%, given the ACS prevalence of 21%. Adding clinical data available at presentation did not improve the ANN ensemble performance. Using the area under the ROC curve and model calibration as measures of performance we found an advantage using the ANN ensemble models compared to the logistic regression models. Conclusion Clinically, a prediction model of the present type, combined with the judgment of trained emergency department personnel, could be useful for the early discharge of chest pain patients in populations with a low prevalence of ACS

    Theoretical Interpretations and Applications of Radial Basis Function Networks

    Get PDF
    Medical applications usually used Radial Basis Function Networks just as Artificial Neural Networks. However, RBFNs are Knowledge-Based Networks that can be interpreted in several way: Artificial Neural Networks, Regularization Networks, Support Vector Machines, Wavelet Networks, Fuzzy Controllers, Kernel Estimators, Instanced-Based Learners. A survey of their interpretations and of their corresponding learning algorithms is provided as well as a brief survey on dynamic learning algorithms. RBFNs' interpretations can suggest applications that are particularly interesting in medical domains
    corecore