41 research outputs found

    Making Presentation Math Computable

    Get PDF
    This Open-Access-book addresses the issue of translating mathematical expressions from LaTeX to the syntax of Computer Algebra Systems (CAS). Over the past decades, especially in the domain of Sciences, Technology, Engineering, and Mathematics (STEM), LaTeX has become the de-facto standard to typeset mathematical formulae in publications. Since scientists are generally required to publish their work, LaTeX has become an integral part of today's publishing workflow. On the other hand, modern research increasingly relies on CAS to simplify, manipulate, compute, and visualize mathematics. However, existing LaTeX import functions in CAS are limited to simple arithmetic expressions and are, therefore, insufficient for most use cases. Consequently, the workflow of experimenting and publishing in the Sciences often includes time-consuming and error-prone manual conversions between presentational LaTeX and computational CAS formats. To address the lack of a reliable and comprehensive translation tool between LaTeX and CAS, this thesis makes the following three contributions. First, it provides an approach to semantically enhance LaTeX expressions with sufficient semantic information for translations into CAS syntaxes. Second, it demonstrates the first context-aware LaTeX to CAS translation framework LaCASt. Third, the thesis provides a novel approach to evaluate the performance for LaTeX to CAS translations on large-scaled datasets with an automatic verification of equations in digital mathematical libraries. This is an open access book

    Proof-theoretic Semantics for Intuitionistic Multiplicative Linear Logic

    Get PDF
    This work is the first exploration of proof-theoretic semantics for a substructural logic. It focuses on the base-extension semantics (B-eS) for intuitionistic multiplicative linear logic (IMLL). The starting point is a review of Sandqvist’s B-eS for intuitionistic propositional logic (IPL), for which we propose an alternative treatment of conjunction that takes the form of the generalized elimination rule for the connective. The resulting semantics is shown to be sound and complete. This motivates our main contribution, a B-eS for IMLL , in which the definitions of the logical constants all take the form of their elimination rule and for which soundness and completeness are established

    Automated Reasoning

    Get PDF
    This volume, LNAI 13385, constitutes the refereed proceedings of the 11th International Joint Conference on Automated Reasoning, IJCAR 2022, held in Haifa, Israel, in August 2022. The 32 full research papers and 9 short papers presented together with two invited talks were carefully reviewed and selected from 85 submissions. The papers focus on the following topics: Satisfiability, SMT Solving,Arithmetic; Calculi and Orderings; Knowledge Representation and Jutsification; Choices, Invariance, Substitutions and Formalization; Modal Logics; Proofs System and Proofs Search; Evolution, Termination and Decision Prolems. This is an open access book

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions

    XXIII Edición del Workshop de Investigadores en Ciencias de la Computación : Libro de actas

    Get PDF
    Compilación de las ponencias presentadas en el XXIII Workshop de Investigadores en Ciencias de la Computación (WICC), llevado a cabo en Chilecito (La Rioja) en abril de 2021.Red de Universidades con Carreras en Informátic

    Syntactic-Semantic Form of Mizar Articles

    Get PDF
    Mizar Mathematical Library is most appreciated for the wealth of mathematical knowledge it contains. However, accessing this publicly available huge corpus of formalized data is not straightforward due to the complexity of the underlying Mizar language, which has been designed to resemble informal mathematical papers. For this reason, most systems exploring the library are based on an internal XML representation format used by semantic modules of Mizar. This representation is easily accessible, but it lacks certain syntactic information available only in the original human-readable Mizar source files. In this paper we propose a new XML-based format which combines both syntactic and semantic data. It is intended to facilitate various applications of the Mizar library requiring fullest possible information to be retrieved from the formalization files

    ProverX: rewriting and extending prover9

    Get PDF
    O propósito principal deste projecto é tornar o demonstrador automático de teoremas Prover9 programável e, por conseguinte, extensível. Este propósito foi conseguido acrescentando um interpretador de Python, uma linha de comandos e uma biblioteca de módulos, objectos e funções escritos em Python para interagir com ficheiros de Prover9 e Mace4. Foi também criada uma “interface” gráfica de utilizador (GUI) sob a forma de uma aplicação web para trazer aos utilizadores um meio mais eficiente e rápido de trabalhar com demonstrações automáticas de teoremas. A nova biblioteca de “scripting” oferece aos utilizadores novas funcionalidades tais como correr várias sessões simultâneas de Prover9 parando automaticamente quando uma demonstração (ou um contraexemplo) é encontrada, elaborar estratégias para aumentar a velocidade com que as demonstrações são encontradas ou diminuir o tamanho das mesmas. Outro módulo permite interagir com o sistema de álgebra GAP. Sobre esta biblioteca, muitas outras funcionalidades podem ser facilmente acrescentadas pois o objectivo principal é dar aos utilizadores a capacidade de acrescentar novas funcionalidades ao Prover9. Resumindo, o objectivo deste projecto é oferecer à comunidade matemática um ambiente integrado para trabalhar com demonstração automática de teoremas.The primary purpose of this project is to extend Prover9 with a scripting language. This was achieved by adding a Python interpreter, an interactive command line and a special scripting library to interact with Prover9 and Mace4 files. A user interface in the form of a web application was also created to help users achieve a more rapid and efficient way of working with automated theorem proving. The new scripting library offers utilities that allows a user to run several Prover9 sessions concurrently and to create strategies for increasing the effectiveness of the proof search or to search for shorter proofs. Another module allows to interact with the algebra system GAP. Based on the library, many more functionalities can be easily added, as the main goal is to give users the ability to extend the functionality of Prover9 the way they see fit. In conclusion, the aim of this project is to offer to the mathematical community an integrated environment for working with automated reasonin

    Toward Structured Proofs for Dynamic Logics

    Full text link
    We present Kaisar, a structured interactive proof language for differential dynamic logic (dL), for safety-critical cyber-physical systems (CPS). The defining feature of Kaisar is *nominal terms*, which simplify CPS proofs by making the frequently needed historical references to past program states first-class. To support nominals, we extend the notion of structured proof with a first-class notion of *structured symbolic execution* of CPS models. We implement Kaisar in the theorem prover KeYmaera X and reproduce an example on the safe operation of a parachute and a case study on ground robot control. We show how nominals simplify common CPS reasoning tasks when combined with other features of structured proof. We develop an extensive metatheory for Kaisar. In addition to soundness and completeness, we show a formal specification for Kaisar's nominals and relate Kaisar to a nominal variant of dL
    corecore