313 research outputs found

    Fault-tolerance in two-dimensional topological systems

    Get PDF
    This thesis is a collection of ideas with the general goal of building, at least in the abstract, a local fault-tolerant quantum computer. The connection between quantum information and topology has proven to be an active area of research in several fields. The introduction of the toric code by Alexei Kitaev demonstrated the usefulness of topology for quantum memory and quantum computation. Many quantum codes used for quantum memory are modeled by spin systems on a lattice, with operators that extract syndrome information placed on vertices or faces of the lattice. It is natural to wonder whether the useful codes in such systems can be classified. This thesis presents work that leverages ideas from topology and graph theory to explore the space of such codes. Homological stabilizer codes are introduced and it is shown that, under a set of reasonable assumptions, any qubit homological stabilizer code is equivalent to either a toric code or a color code. Additionally, the toric code and the color code correspond to distinct classes of graphs. Many systems have been proposed as candidate quantum computers. It is very desirable to design quantum computing architectures with two-dimensional layouts and low complexity in parity-checking circuitry. Kitaev\u27s surface codes provided the first example of codes satisfying this property. They provided a new route to fault tolerance with more modest overheads and thresholds approaching 1%. The recently discovered color codes share many properties with the surface codes, such as the ability to perform syndrome extraction locally in two dimensions. Some families of color codes admit a transversal implementation of the entire Clifford group. This work investigates color codes on the 4.8.8 lattice known as triangular codes. I develop a fault-tolerant error-correction strategy for these codes in which repeated syndrome measurements on this lattice generate a three-dimensional space-time combinatorial structure. I then develop an integer program that analyzes this structure and determines the most likely set of errors consistent with the observed syndrome values. I implement this integer program to find the threshold for depolarizing noise on small versions of these triangular codes. Because the threshold for magic-state distillation is likely to be higher than this value and because logical CNOT gates can be performed by code deformation in a single block instead of between pairs of blocks, the threshold for fault-tolerant quantum memory for these codes is also the threshold for fault-tolerant quantum computation with them. Since the advent of a threshold theorem for quantum computers much has been improved upon. Thresholds have increased, architectures have become more local, and gate sets have been simplified. The overhead for magic-state distillation has been studied, but not nearly to the extent of the aforementioned topics. A method for greatly reducing this overhead, known as reusable magic states, is studied here. While examples of reusable magic states exist for Clifford gates, I give strong reasons to believe they do not exist for non-Clifford gates

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum

    Sir Gawain and the Green knight :

    Get PDF

    Solutions to the Knower Paradox in the Light of Haack’s Criteria

    Get PDF
    The knower paradox states that the statement ‘We know that this statement is false’ leads to inconsistency. This article presents a fresh look at this paradox and some well-known solutions from the literature. Paul ÉgrĂ© discusses three possible solutions that modal provability logic provides for the paradox by surveying and comparing three different provability interpretations of modality, originally described by Skyrms, Anderson, and Solovay. In this article, some background is explained to clarify Égré’s solutions, all three of which hinge on intricacies of provability logic and its arithmetical interpretations. To check whether Égré’s solutions are satisfactory, we use the criteria for solutions to paradoxes defined by Susan Haack and we propose some refinements of them. This article aims to describe to what extent the knower paradox can be solved using provability logic and to what extent the solutions proposed in the literature satisfy Haack’s criteria. Finally, the article offers some reflections on the relation between knowledge, proof, and provability, as inspired by the knower paradox and its solutions.</p

    Estimating semantic structure for the VQA answer space

    Full text link
    Since its appearance, Visual Question Answering (VQA, i.e. answering a question posed over an image), has always been treated as a classification problem over a set of predefined answers. Despite its convenience, this classification approach poorly reflects the semantics of the problem limiting the answering to a choice between independent proposals, without taking into account the similarity between them (e.g. equally penalizing for answering cat or German shepherd instead of dog). We address this issue by proposing (1) two measures of proximity between VQA classes, and (2) a corresponding loss which takes into account the estimated proximity. This significantly improves the generalization of VQA models by reducing their language bias. In particular, we show that our approach is completely model-agnostic since it allows consistent improvements with three different VQA models. Finally, by combining our method with a language bias reduction approach, we report SOTA-level performance on the challenging VQAv2-CP dataset

    Complexity of token swapping and its variants

    Get PDF
    AbstractIn the Token Swapping problem we are given a graph with a token placed on each vertex. Each token has exactly one destination vertex, and we try to move all the tokens to their destinations, using the minimum number of swaps, i.e., operations of exchanging the tokens on two adjacent vertices. As the main result of this paper, we show that Token Swapping is W[1]-hard parameterized by the length k of a shortest sequence of swaps. In fact, we prove that, for any computable function f, it cannot be solved in time f(k)no(k/logk) where n is the number of vertices of the input graph, unless the ETH fails. This lower bound almost matches the trivial nO(k)-time algorithm. We also consider two generalizations of the Token Swapping, namely Colored Token Swapping (where the tokens have colors and tokens of the same color are indistinguishable), and Subset Token Swapping (where each token has a set of possible destinations). To complement the hardness result, we prove that even the most general variant, Subset Token Swapping, is FPT in nowhere-dense graph classes. Finally, we consider the complexities of all three problems in very restricted classes of graphs: graphs of bounded treewidth and diameter, stars, cliques, and paths, trying to identify the borderlines between polynomial and NP-hard cases

    Complexity of token swapping and its variants

    Get PDF
    AbstractIn the Token Swapping problem we are given a graph with a token placed on each vertex. Each token has exactly one destination vertex, and we try to move all the tokens to their destinations, using the minimum number of swaps, i.e., operations of exchanging the tokens on two adjacent vertices. As the main result of this paper, we show that Token Swapping is W[1]-hard parameterized by the length k of a shortest sequence of swaps. In fact, we prove that, for any computable function f, it cannot be solved in time f(k)no(k/logk) where n is the number of vertices of the input graph, unless the ETH fails. This lower bound almost matches the trivial nO(k)-time algorithm. We also consider two generalizations of the Token Swapping, namely Colored Token Swapping (where the tokens have colors and tokens of the same color are indistinguishable), and Subset Token Swapping (where each token has a set of possible destinations). To complement the hardness result, we prove that even the most general variant, Subset Token Swapping, is FPT in nowhere-dense graph classes. Finally, we consider the complexities of all three problems in very restricted classes of graphs: graphs of bounded treewidth and diameter, stars, cliques, and paths, trying to identify the borderlines between polynomial and NP-hard cases
    • 

    corecore