75,974 research outputs found

    Scaling Reinforcement Learning Paradigms for Motor Control

    Get PDF
    Reinforcement learning offers a general framework to explain reward related learning in artificial and biological motor control. However, current reinforcement learning methods rarely scale to high dimensional movement systems and mainly operate in discrete, low dimensional domains like game-playing, artificial toy problems, etc. This drawback makes them unsuitable for application to human or bio-mimetic motor control. In this poster, we look at promising approaches that can potentially scale and suggest a novel formulation of the actor-critic algorithm which takes steps towards alleviating the current shortcomings. We argue that methods based on greedy policies are not likely to scale into high-dimensional domains as they are problematic when used with function approximation – a must when dealing with continuous domains. We adopt the path of direct policy gradient based policy improvements since they avoid the problems of unstabilizing dynamics encountered in traditional value iteration based updates. While regular policy gradient methods have demonstrated promising results in the domain of humanoid notor control, we demonstrate that these methods can be significantly improved using the natural policy gradient instead of the regular policy gradient. Based on this, it is proved that Kakade’s ‘average natural policy gradient’ is indeed the true natural gradient. A general algorithm for estimating the natural gradient, the Natural Actor-Critic algorithm, is introduced. This algorithm converges with probability one to the nearest local minimum in Riemannian space of the cost function. The algorithm outperforms nonnatural policy gradients by far in a cart-pole balancing evaluation, and offers a promising route for the development of reinforcement learning for truly high-dimensionally continuous state-action systems. Keywords: Reinforcement learning, neurodynamic programming, actorcritic methods, policy gradient methods, natural policy gradien

    Gradient-based Reinforcement Planning in Policy-Search Methods

    Full text link
    We introduce a learning method called ``gradient-based reinforcement planning'' (GREP). Unlike traditional DP methods that improve their policy backwards in time, GREP is a gradient-based method that plans ahead and improves its policy before it actually acts in the environment. We derive formulas for the exact policy gradient that maximizes the expected future reward and confirm our ideas with numerical experiments.Comment: This is an extended version of the paper presented at the EWRL 2001 in Utrecht (The Netherlands

    Expected Policy Gradients

    Full text link
    We propose expected policy gradients (EPG), which unify stochastic policy gradients (SPG) and deterministic policy gradients (DPG) for reinforcement learning. Inspired by expected sarsa, EPG integrates across the action when estimating the gradient, instead of relying only on the action in the sampled trajectory. We establish a new general policy gradient theorem, of which the stochastic and deterministic policy gradient theorems are special cases. We also prove that EPG reduces the variance of the gradient estimates without requiring deterministic policies and, for the Gaussian case, with no computational overhead. Finally, we show that it is optimal in a certain sense to explore with a Gaussian policy such that the covariance is proportional to the exponential of the scaled Hessian of the critic with respect to the actions. We present empirical results confirming that this new form of exploration substantially outperforms DPG with the Ornstein-Uhlenbeck heuristic in four challenging MuJoCo domains.Comment: Conference paper, AAAI-18, 12 pages including supplemen
    corecore