463 research outputs found

    Heavy-ion physics: freedom to do hot, dense, exciting QCD

    Full text link
    In these two lectures I review the basics of heavy-ion collisions at relativistic energies and the physics we can do with them. I aim to cover the basics on the kinematics and observables in heavy-ion collider experiments, the basics on the phenomenology of the nuclear matter phase diagram, some of the model building and simulations currently used in the heavy-ion physics community and a selected list of amazing phenomenological discoveries and predictions.Comment: These lectures were given at the 2019 CERN Latin-American School of High-Energy Physics in Cordoba, Argentina, 13 - 26 March 2019 and the notes have been submitted to proceedings of CLASHEP 2019. These lecture notes are based on previous Heavy-Ion and extreme QCD lectures given at CLASHEP by A. Ayala (2017), E. Fraga (2015) and J. Takahashi (2013

    Science-teacher education advanced methods national workshop for Scotland report

    Get PDF
    The first phase of the S-TEAM project at the University of Strathclyde - evaluating the state of the art of inquiry-based science teaching and education in teacher education institutions and schools in Scotland - is now well advanced. Phase one identifies the opportunities for and the constraints facing either the implementation or increase of inquiry-based science teaching activity in schools, in the process investigating impressions from current practice in classrooms, from teacher education courses, the policymaking context, as well as the implications for the S-TEAM project itself. All teacher education institutions within Scotland were invited to take part in a one-day workshop at the University of Strathclyde in Glasgow; representatives from the Scottish Government, Her Majesty's Inspectorate of education, a leading science centre, the Early Professional Learning project, and of course the teaching profession itself were also in attendance, giving a total of 19 participants. Key Findings The curriculum and assessment background to promoting advanced methods in science education in Scotland comprises the Curriculum for Excellence (CfE) initiative. The conference participants generally framed their contributions with this in mind. The findings suggested that the CfE, while still in its infancy, is generally supportive and encouraging of investigative science lessons, the range of possible activities that could count as investigative, and in the diversity of the ways in which scientists work. There was however some concern about the relationship between the CfE and Scotland's portfolio of upper-secondary school examinations, as yet unspecified in policy, and thus leaving open to question the degree to which the new curriculum will continue to support investigations as it currently is. Over emphasis on summative assessment through grading and examinations tend to work against the spirit of investigative activity in the science classroom, a practice that depends on a more sophisticated formative approach. There is the associated danger that schools may continue to garner exam success with more traditional teaching methods with the consequence that CfE, though clear enough in its intention to promote investigation / inquiry and creativity, could 'crystallise' into typical assessment styles. Teaching would then be guided by this and genuine investigative activity would be unlikely to develop in the face of the relative certainty (for teachers) of more 'direct' methods. The experience of the workshop delegates suggests that there are current examples of investigative science work in schools, and that these tend to be enjoyable for learners - exciting, good fun, etc. This affective dimension of learning is important and points to the need for S-TEAM to develop indicators that can accommodate affective engagement. Other 'harder' indicators could also be developed as discussion revealed that examination results and pupil uptake of science (girls in this case, helping to change possible preconceptions) could benefit from inquiry based activity. The efficacy of investigative activity in the classroom, however, is unlikely to be fully caught by the strictly quantitative. A further consideration is that S-TEAM could develop indicators that go beyond an immediate research function to operate in such a way as to contribute to the learning of teachers in the classroom through the capacity for practitioner self-evaluation. For example, the critical evaluation of investigative activity that a cohort of initial science-teacher education students have already completed for the project, as part of their professional portfolios, has since been commended by teacher educators as being an effective intervention in its own right. The early results from this indicator confirm the existence of a number of implicit components of developing confidence in undertaking investigative activity - for example, knowledge of the subject curriculum, class, resources, and so on - and teaching methods, from structured additions to the more opportunistic and ad hoc, that practitioners employ. While arguing that teachers could and ought to accommodate a degree of inquiry in their teaching, a critical caveat is that beginners benefit from protected exploratory practice prior to their full teaching post and need space themselves to investigate and explore; it is reasonable for them to exercise restraint in their first year until their confidence is fairly secure. Implications 1. Promote inquiry in teaching by using examples of existing good practice and by working with experienced teachers in order to take lessons back from them to beginners. 2. Develop purpose specific indicators of inquiry and reflection that go beyond an immediate research function to contribute to the learning of (new) teachers through a capacity for the self-evaluation of the use of innovative methods in the classroom. 3. Collate video examples of inquiry as it happens in the classrooms of student and practising teachers, as well as stories and reflective discussion about how it happened, so as to learn how teachers solve the problems of introducing more investigative approaches into lessons. 4. For the development of teachers' knowledge base in science, create a typology of investigative knowledge and experience, upon which the project's activities might draw, of the following levels of scientific perspective: The socio-historical nature of science. Contemporary research activity in science. Initial teacher education in science. Experienced teaching of science. Beginning teaching of science. The child's classroom experience of science. 5. For the ongoing practical application of inquiry-based research, S-TEAM will continue to pursue, interrogate and engage with existing examples of inquiry and resources in the months ahead

    Multiqubit systems: highly entangled states and entanglement distribution

    Get PDF
    Texto completo arXiv:0803.3979v1.-- PACS: 03.67.Lx Quantum computation architectures and implementations 03.67.Mn Entanglement measures, witnesses, and other characterizations 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell's inequalities, GHZ states, etc.).-A comparison is made of various searching procedures, based upon different entanglement measures or entanglement indicators, for highly entangled multi-qubits states. In particular, our present results are compared with those recently reported by Brown et al. [J. Phys. A: Math. Gen. 38 (2005) 1119]. The statistical distribution of entanglement values for the aforementioned multi-qubit systems is also exploredThis work was partially supported by the MEC grant FIS2005-02796 (Spain) and FEDER (EU) and by CONICET (Argentine Agency). The ïŹnancial assistance of the National Research Foundation (NRF; South African Agency) toward this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the authors and are not necessarily to be attributed to the NRF. A Borras acknowledges support from the FPU grant AP-2004- ÂŽ 2962 (MEC-Spain)Peer reviewe

    Analytic Description of Critical Point Actinides in a Transition from Octupole Deformation to Octupole Vibrations

    Full text link
    An analytic collective model in which the relative presence of the quadrupole and octupole deformations is determined by a parameter (phi_0), while axial symmetry is obeyed, is developed. The model [to be called the analytic quadrupole octupole axially symmetric model (AQOA)] involves an infinite well potential, provides predictions for energy and B(EL) ratios which depend only on phi_0, draws the border between the regions of octupole deformation and octupole vibrations in an essentially parameter-independent way, and describes well 226-Th and 226-Ra, for which experimental energy data are shown to suggest that they lie close to this border. The similarity of the AQOA results with phi_0=45 degrees for ground state band spectra and B(E2) transition rates to the predictions of the X(5) model is pointed out. Analytic solutions are also obtained for Davidson potentials, leading to the AQOA spectrum through a variational procedure.Comment: LaTeX, 27 pages, including 14 postscript figure

    On data-driven systems analyzing, supporting and enhancing users’ interaction and experience

    Get PDF
    [EN]The research areas of Human-Computer Interaction and Software Architectures have been traditionally treated separately, but in the literature, many authors made efforts to merge them to build better software systems. One of the common gaps between software engineering and usability is the lack of strategies to apply usability principles in the initial design of software architectures. Including these principles since the early phases of software design would help to avoid later architectural changes to include user experience requirements. The combination of both fields (software architectures and Human-Computer Interaction) would contribute to building better interactive software that should include the best from both the systems and user-centered designs. In that combination, the software architectures should enclose the fundamental structure and ideas of the system to offer the desired quality based on sound design decisions. Moreover, the information kept within a system is an opportunity to extract knowledge about the system itself, its components, the software included, the users or the interaction occurring inside. The knowledge gained from the information generated in a software environment can be used to improve the system itself, its software, the users’ experience, and the results. So, the combination of the areas of Knowledge Discovery and Human-Computer Interaction offers ideal conditions to address Human-Computer-Interaction-related challenges. The Human-Computer Interaction focuses on human intelligence, the Knowledge Discovery in computational intelligence, and the combination of both can raise the support of human intelligence with machine intelligence to discover new insights in a world crowded of data. This Ph.D. Thesis deals with these kinds of challenges: how approaches like data-driven software architectures (using Knowledge Discovery techniques) can help to improve the users' interaction and experience within an interactive system. Specifically, it deals with how to improve the human-computer interaction processes of different kind of stakeholders to improve different aspects such as the user experience or the easiness to accomplish a specific task. Several research actions and experiments support this investigation. These research actions included performing a systematic literature review and mapping of the literature that was aimed at finding how the software architectures in the literature have been used to support, analyze or enhance the human-computer interaction. Also, the actions included work on four different research scenarios that presented common challenges in the Human- Computer Interaction knowledge area. The case studies that fit into the scenarios selected were chosen based on the Human-Computer Interaction challenges they present, and on the authors’ accessibility to them. The four case studies were: an educational laboratory virtual world, a Massive Open Online Course and the social networks where the students discuss and learn, a system that includes very large web forms, and an environment where programmers develop code in the context of quantum computing. The development of the experiences involved the review of more than 2700 papers (only in the literature review phase), the analysis of the interaction of 6000 users in four different contexts or the analysis of 500,000 quantum computing programs. As outcomes from the experiences, some solutions are presented regarding the minimal software artifacts to include in software architectures, the behavior they should exhibit, the features desired in the extended software architecture, some analytic workflows and approaches to use, or the different kinds of feedback needed to reinforce the users’ interaction and experience. The results achieved led to the conclusion that, despite this is not a standard practice in the literature, the software environments should embrace Knowledge Discovery and datadriven principles to analyze and respond appropriately to the users’ needs and improve or support the interaction. To adopt Knowledge Discovery and data-driven principles, the software environments need to extend their software architectures to cover also the challenges related to Human-Computer Interaction. Finally, to tackle the current challenges related to the users’ interaction and experience and aiming to automate the software response to users’ actions, desires, and behaviors, the interactive systems should also include intelligent behaviors through embracing the Artificial Intelligence procedures and techniques

    Variational quantum algorithm with information sharing

    Get PDF
    We introduce an optimisation method for variational quantum algorithms and experimentally demonstrate a 100-fold improvement in efficiency compared to naive implementations. The effectiveness of our approach is shown by obtaining multi-dimensional energy surfaces for small molecules and a spin model. Our method solves related variational problems in parallel by exploiting the global nature of Bayesian optimisation and sharing information between different optimisers. Parallelisation makes our method ideally suited to the next generation of variational problems with many physical degrees of freedom. This addresses a key challenge in scaling-up quantum algorithms towards demonstrating quantum advantage for problems of real-world interest
    • 

    corecore