243 research outputs found

    Valuing One's Self: Medial Prefrontal Involvement in Epistemic and Emotive Investments in Self-views.

    Full text link
    peer reviewedRecent neuroimaging research has revealed that the medial prefrontal cortex (MPFC) is consistently engaged when people form mental representations of themselves. However, the precise function of this region in self-representation is not yet fully understood. Here, we investigate whether the MPFC contributes to epistemic and emotive investments in self-views, which are essential components of the self-concept that stabilize self-views and shape how one feels about oneself. Using functional magnetic resonance imaging, we show that the level of activity in the MPFC when people think about their personal traits (by judging trait adjectives for self-descriptiveness) depends on their investments in the particular self-view under consideration, as assessed by postscan rating scales. Furthermore, different forms of investments are associated with partly distinct medial prefrontal areas: a region of the dorsal MPFC is uniquely related to the degree of certainty with which a particular self-view is held (one's epistemic investment), whereas a region of the ventral MPFC responds specifically to the importance attached to this self-view (one's emotive investment). These findings provide new insight into the role of the MPFC in self-representation and suggest that the ventral MPFC confers degrees of value upon the particular conception of the self that people construct at a given moment

    Neural evidence of motivational conflict between social values

    Get PDF
    Motivational interdependence is an organizing principle in Schwartz’s circumplex model of social values, which has received abundant cross-cultural support. We used fMRI to test whether motivational relations between social values predict different brain responses in a situation of choice between values. We hypothesized that differences in brain responses would become evident when the more important value had to be selected in pairs of congruent (e.g., wealth and success) as opposed to incongruent (e.g., curiosity and stability) values as they are described in Schwartz’s model, because the former serve mutually facilitating motives, whereas the latter serve mutually inhibiting motives. Consistent with the model, choosing between congruent values led to longer response times and more activation in conflict-related brain regions (e.g., the supplementary motor area, dorsolateral prefrontal cortex) than selecting between incongruent values. These results provide novel neural evidence supporting the circumplex model’s predictions about motivational interdependence between social values. In particular, our results show that the neural networks underlying social values are organized in a way that allows activation patterns related to motivational similarity between congruent values to be dissociated from those related to incongruent values

    The social brain: neural basis of social knowledge

    Get PDF
    Social cognition in humans is distinguished by psychological processes that allow us to make inferences about what is going on inside other people—their intentions, feelings, and thoughts. Some of these processes likely account for aspects of human social behavior that are unique, such as our culture and civilization. Most schemes divide social information processing into those processes that are relatively automatic and driven by the stimuli, versus those that are more deliberative and controlled, and sensitive to context and strategy. These distinctions are reflected in the neural structures that underlie social cognition, where there is a recent wealth of data primarily from functional neuroimaging. Here I provide a broad survey of the key abilities, processes, and ways in which to relate these to data from cognitive neuroscience

    The effects of self-relevance vs. reward value on facial mimicry

    Get PDF
    Facial mimicry is a ubiquitous social behaviour modulated by a range of social cues, including those related to reward value and self-relevance. However, previous research has typically focused on a single moderator at a time, and it remains unknown how moderators interact when studied together. We compared the influence of reward value and self-relevance, by conditioning participants to associate certain faces with winning or losing money for themselves, or, with winning or losing money for another person. After conditioning, participants watched videos of these faces making happy and angry facial expressions whilst we recorded facial electromyographic activity. We found greater smile mimicry (activation of the Zygomaticus Major muscle) in response to happy expressions performed by faces associated with participants' own outcomes vs. faces associated with another person's outcomes. In contrast to previous research, whether a face was associated with winning or losing money did not modulate facial mimicry responses. These results, although preliminary, suggest that when faces are associated with both self-relevance and reward value, self-relevance could supersede the impact of reward value during facial mimicry

    Motivated cognition: effects of reward, emotion, and other motivational factors across a variety of cognitive domains

    Get PDF
    A growing body of literature has demonstrated that motivation influences cognitive processing. The breadth of these effects is extensive and span influences of reward, emotion, and other motivational processes across all cognitive domains. As examples, this scope includes studies of emotional memory, value-based attentional capture, emotion effects on semantic processing, reward-related biases in decision making, and the role of approach/avoidance motivation on cognitive scope. Additionally, other less common forms of motivation–cognition interactions, such as self-referential and motoric processing can also be considered instances of motivated cognition. Here I outline some of the evidence indicating the generality and pervasiveness of these motivation influences on cognition, and introduce the associated ‘research nexus’ at Collabra: Psychology

    The centre of the brain: Topographical model of motor, cognitive, affective, and somatosensory functions of the basal ganglia

    Get PDF
    The basal ganglia have traditionally been viewed as motor processing nuclei; however, functional neuroimaging evidence has implicated these structures in more complex cognitive and affective processes that are fundamental for a range of human activities. Using quantitative meta-analysis methods we assessed the functional subdivisions of basal ganglia nuclei in relation to motor (body and eye movements), cognitive (working-memory and executive), affective (emotion and reward) and somatosensory functions in healthy participants. We document affective processes in the anterior parts of the caudate head with the most overlap within the left hemisphere. Cognitive processes showed the most widespread response, whereas motor processes occupied more central structures. On the basis of these demonstrated functional roles of the basal ganglia, we provide a new comprehensive topographical model of these nuclei and insight into how they are linked to a wide range of behaviors.© 2012 Wiley Periodicals, Inc
    corecore