243 research outputs found

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    Deep Learning Concepts for Evolutionary Art

    Get PDF
    A deep convolutional neural network (CNN) trained on millions of images forms a very high-level abstract overview of any given target image. Our primary goal is to use this high-level content information of a given target image to guide the automatic evolution of images. We use genetic programming (GP) to evolve procedural textures. We incorporate a pre-trained deep CNN model into the fitness. We are not performing any training, but rather, we pass a target image through the pre-trained deep CNN and use its the high-level representation as the fitness guide for evolved images. We develop a preprocessing strategy called Mean Minimum Matrix Strategy (MMMS) which reduces the dimensions and identifies the most relevant high-level activation maps. The technique using reduced activation matrices for a fitness shows promising results. GP is able to guide the evolution of textures such that they have shared characteristics with the target image. We also experiment with the fully connected “classifier” layers of the deep CNN. The evolved images are able to achieve high confidence scores from the deep CNN module for some tested target images. Finally, we implement our own shallow convolutional neural network with a fixed set of filters. Experiments show that the basic CNN had limited effectiveness, likely due to the lack of training. In conclusion, the research shows the potential for using deep learning concepts in evolutionary art. As deep CNN models become better understood, they will be able to be used more effectively for evolutionary art

    Evolving Graphs by Graph Programming

    Get PDF
    Graphs are a ubiquitous data structure in computer science and can be used to represent solutions to difficult problems in many distinct domains. This motivates the use of Evolutionary Algorithms to search over graphs and efficiently find approximate solutions. However, existing techniques often represent and manipulate graphs in an ad-hoc manner. In contrast, rule-based graph programming offers a formal mechanism for describing relations over graphs. This thesis proposes the use of rule-based graph programming for representing and implementing genetic operators over graphs. We present the Evolutionary Algorithm Evolving Graphs by Graph Programming and a number of its extensions which are capable of learning stateful and stateless digital circuits, symbolic expressions and Artificial Neural Networks. We demonstrate that rule-based graph programming may be used to implement new and effective constraint-respecting mutation operators and show that these operators may strictly generalise others found in the literature. Through our proposal of Semantic Neutral Drift, we accelerate the search process by building plateaus into the fitness landscape using domain knowledge of equivalence. We also present Horizontal Gene Transfer, a mechanism whereby graphs may be passively recombined without disrupting their fitness. Through rigorous evaluation and analysis of over 20,000 independent executions of Evolutionary Algorithms, we establish numerous benefits of our approach. We find that on many problems, Evolving Graphs by Graph Programming and its variants may significantly outperform other approaches from the literature. Additionally, our empirical results provide further evidence that neutral drift aids the efficiency of evolutionary search

    Characterization and Classification of Adherent Cells in Monolayer Culture using Automated Tracking and Evolutionary Algorithms

    Get PDF
    This paper presents a novel method for tracking and characterizing adherent cells in monolayer culture. A system of cell tracking employing computer vision techniques was applied to time-lapse videos of replicate normal human uro-epithelial cell cultures exposed to different concentrations of adenosine triphosphate (ATP) and a selective purinergic P2X antagonist (PPADS), acquired over a 24 hour period. Subsequent analysis following feature extraction demonstrated the ability of the technique to successfully separate the modulated classes of cell using evolutionary algorithms. Specifically, a Cartesian Genetic Program (CGP) network was evolved that identified average migration speed, in-contact angular velocity, cohesivity and average cell clump size as the principal features contributing to the separation. Our approach not only provides non-biased and parsimonious insight into modulated class behaviors, but can be extracted as mathematical formulae for the parameterization of computational models

    User hints for optimisation processes

    Get PDF
    Innovative improvements in the area of Human-Computer Interaction and User Interfaces have en-abled intuitive and effective applications for a variety of problems. On the other hand, there has also been the realization that several real-world optimization problems still cannot be totally auto-mated. Very often, user interaction is necessary for refining the optimization problem, managing the computational resources available, or validating or adjusting a computer-generated solution. This thesis investigates how humans can help optimization methods to solve such difficult prob-lems. It presents an interactive framework where users play a dynamic and important role by pro-viding hints. Hints are actions that help to insert domain knowledge, to escape from local minima, to reduce the space of solutions to be explored, or to avoid ambiguity when there is more than one optimal solution. Examples of user hints are adjustments of constraints and of an objective function, focusing automatic methods on a subproblem of higher importance, and manual changes of an ex-isting solution. User hints are given in an intuitive way through a graphical interface. Visualization tools are also included in order to inform about the state of the optimization process. We apply the User Hints framework to three combinatorial optimization problems: Graph Clus-tering, Graph Drawing and Map Labeling. Prototype systems are presented and evaluated for each problem. The results of the study indicate that optimization processes can benefit from human interaction. The main goal of this thesis is to list cases where human interaction is helpful, and provide an ar-chitecture for supporting interactive optimization. Our contributions include the general User Hints framework and particular implementations of it for each optimization problem. We also present a general process, with guidelines, for applying our framework to other optimization problems

    Strategies for Evolving Diverse and Effective Behaviours in Pursuit Domains

    Get PDF
    Evolutionary algorithms have a tendency to overuse and exploit particular behaviours in their search for optimality, even across separate runs. The resulting set of monotonous solutions caused by this tendency is a problem in many applications. This research explores different strategies designed to encourage an interesting set of diverse behaviours while still maintaining an appreciable level of efficacy. Embodied agents are situated within an open plane and play against each other in various pursuit game scenarios. The pursuit games consist of a single predator agent and twenty prey agents, with the goal always requiring the predator to catch as many prey as possible before the time limit is reached. The predator's controller is evolved through genetic programming while the preys' controllers are hand-crafted. The fitness of a solution is first calculated in a traditional manner. Inspired by Lehman and Stanley's novelty search strategy, the fitness is then combined with the diversity of the solution to produce the final fitness score. The original fitness score is determined by the number of captured prey, and the diversity score is determined through the combination of four behaviour measurements. Among many promising results, a particular diversity-based evaluation strategy and weighting combination was found to provide solutions that exhibit an excellent balance between diversity and efficacy. The results were analyzed quantitatively and qualitatively, showing the emergence of diverse and effective behaviours

    Evolutionary dynamics, topological disease structures, and genetic machine learning

    Full text link
    Topological evolution is a new dynamical systems model of biological evolution occurring within a genomic state space. It can be modeled equivalently as a stochastic dynamical system, a stochastic differential equation, or a partial differential equation drift-diffusion model. An application of this approach is a model of disease evolution tracing diseases in ways similar to standard functional traits (e.g., organ evolution). Genetically embedded diseases become evolving functional components of species-level genomes. The competition between species-level evolution (which tends to maintain diseases) and individual evolution (which acts to eliminate them), yields a novel structural topology for the stochastic dynamics involved. In particular, an unlimited set of dynamical time scales emerges as a means of timing different levels of evolution: from individual to group to species and larger units. These scales exhibit a dynamical tension between individual and group evolutions, which are modeled on very different (fast and slow, respectively) time scales. This is analyzed in the context of a potentially major constraint on evolution: the species-level enforcement of lifespan via (topological) barriers to genomic longevity. This species-enforced behavior is analogous to certain types of evolutionary altruism, but it is denoted here as extreme altruism based on its potential shaping through mass extinctions. We give examples of biological mechanisms implementing some of the topological barriers discussed and provide mathematical models for them. This picture also introduces an explicit basis for lifespan-limiting evolutionary pressures. This involves a species-level need to maintain flux in its genome via a paced turnover of its biomass. This is necessitated by the need for phenomic characteristics to keep pace with genomic changes through evolution. Put briefly, the phenome must keep up with the genome, which occurs with an optimized limited lifespan. An important consequence of this model is a new role for diseases in evolution. Rather than their commonly recognized role as accidental side-effects, they play a central functional role in the shaping of an optimal lifespan for a species implemented through the topology of their embedding into the genome state space. This includes cancers, which are known to be embedded into the genome in complex and sometimes hair-triggered ways arising from DNA damage. Such cancers are known also to act in engineered and teleological ways that have been difficult to explain using currently very popular theories of intra-organismic cancer evolution. This alternative inter-organismic picture presents cancer evolution as occurring over much longer (evolutionary) time scales rather than very shortened organic evolutions that occur in individual cancers. This in turn may explain some evolved, intricate, and seemingly engineered properties of cancer. This dynamical evolutionary model is framed in a multiscaled picture in which different time scales are almost independently active in the evolutionary process acting on semi-independent parts of the genome. We additionally move from natural evolution to artificial implementations of evolutionary algorithms. We study genetic programming for the structured construction of machine learning features in a new structural risk minimization environment. While genetic programming in feature engineering is not new, we propose a Lagrangian optimization criterion for defining new feature sets inspired by structural risk minimization in statistical learning. We bifurcate the optimization of this Lagrangian into two exhaustive categories involving local and global search. The former is accomplished through local descent with given basins of attraction while the latter is done through a combinatorial search for new basins via an evolution algorithm

    Artificial general intelligence: Proceedings of the Second Conference on Artificial General Intelligence, AGI 2009, Arlington, Virginia, USA, March 6-9, 2009

    Get PDF
    Artificial General Intelligence (AGI) research focuses on the original and ultimate goal of AI – to create broad human-like and transhuman intelligence, by exploring all available paths, including theoretical and experimental computer science, cognitive science, neuroscience, and innovative interdisciplinary methodologies. Due to the difficulty of this task, for the last few decades the majority of AI researchers have focused on what has been called narrow AI – the production of AI systems displaying intelligence regarding specific, highly constrained tasks. In recent years, however, more and more researchers have recognized the necessity – and feasibility – of returning to the original goals of the field. Increasingly, there is a call for a transition back to confronting the more difficult issues of human level intelligence and more broadly artificial general intelligence
    • …
    corecore