22,025 research outputs found

    An infrastructure service recommendation system for cloud applications with real-time QoS requirement constraints

    Get PDF
    The proliferation of cloud computing has revolutionized the hosting and delivery of Internet-based application services. However, with the constant launch of new cloud services and capabilities almost every month by both big (e.g., Amazon Web Service and Microsoft Azure) and small companies (e.g., Rackspace and Ninefold), decision makers (e.g., application developers and chief information officers) are likely to be overwhelmed by choices available. The decision-making problem is further complicated due to heterogeneous service configurations and application provisioning QoS constraints. To address this hard challenge, in our previous work, we developed a semiautomated, extensible, and ontology-based approach to infrastructure service discovery and selection only based on design-time constraints (e.g., the renting cost, the data center location, the service feature, etc.). In this paper, we extend our approach to include the real-time (run-time) QoS (the end-to-end message latency and the end-to-end message throughput) in the decision-making process. The hosting of next-generation applications in the domain of online interactive gaming, large-scale sensor analytics, and real-time mobile applications on cloud services necessitates the optimization of such real-time QoS constraints for meeting service-level agreements. To this end, we present a real-time QoS-aware multicriteria decision-making technique that builds over the well-known analytic hierarchy process method. The proposed technique is applicable to selecting Infrastructure as a Service (IaaS) cloud offers, and it allows users to define multiple design-time and real-time QoS constraints or requirements. These requirements are then matched against our knowledge base to compute the possible best fit combinations of cloud services at the IaaS layer. We conducted extensive experiments to prove the feasibility of our approach

    Autonomic care platform for optimizing query performance

    Get PDF
    Background: As the amount of information in electronic health care systems increases, data operations get more complicated and time-consuming. Intensive Care platforms require a timely processing of data retrievals to guarantee the continuous display of recent data of patients. Physicians and nurses rely on this data for their decision making. Manual optimization of query executions has become difficult to handle due to the increased amount of queries across multiple sources. Hence, a more automated management is necessary to increase the performance of database queries. The autonomic computing paradigm promises an approach in which the system adapts itself and acts as self-managing entity, thereby limiting human interventions and taking actions. Despite the usage of autonomic control loops in network and software systems, this approach has not been applied so far for health information systems. Methods: We extend the COSARA architecture, an infection surveillance and antibiotic management service platform for the Intensive Care Unit (ICU), with self-managed components to increase the performance of data retrievals. We used real-life ICU COSARA queries to analyse slow performance and measure the impact of optimizations. Each day more than 2 million COSARA queries are executed. Three control loops, which monitor the executions and take action, have been proposed: reactive, deliberative and reflective control loops. We focus on improvements of the execution time of microbiology queries directly related to the visual displays of patients' data on the bedside screens. Results: The results show that autonomic control loops are beneficial for the optimizations in the data executions in the ICU. The application of reactive control loop results in a reduction of 8.61% of the average execution time of microbiology results. The combined application of the reactive and deliberative control loop results in an average query time reduction of 10.92% and the combination of reactive, deliberative and reflective control loops provides a reduction of 13.04%. Conclusions: We found that by controlled reduction of queries' executions the performance for the end-user can be improved. The implementation of autonomic control loops in an existing health platform, COSARA, has a positive effect on the timely data visualization for the physician and nurse

    Discrete event simulation and virtual reality use in industry: new opportunities and future trends

    Get PDF
    This paper reviews the area of combined discrete event simulation (DES) and virtual reality (VR) use within industry. While establishing a state of the art for progress in this area, this paper makes the case for VR DES as the vehicle of choice for complex data analysis through interactive simulation models, highlighting both its advantages and current limitations. This paper reviews active research topics such as VR and DES real-time integration, communication protocols, system design considerations, model validation, and applications of VR and DES. While summarizing future research directions for this technology combination, the case is made for smart factory adoption of VR DES as a new platform for scenario testing and decision making. It is put that in order for VR DES to fully meet the visualization requirements of both Industry 4.0 and Industrial Internet visions of digital manufacturing, further research is required in the areas of lower latency image processing, DES delivery as a service, gesture recognition for VR DES interaction, and linkage of DES to real-time data streams and Big Data sets

    Context-aware adaptation in DySCAS

    Get PDF
    DySCAS is a dynamically self-configuring middleware for automotive control systems. The addition of autonomic, context-aware dynamic configuration to automotive control systems brings a potential for a wide range of benefits in terms of robustness, flexibility, upgrading etc. However, the automotive systems represent a particularly challenging domain for the deployment of autonomics concepts, having a combination of real-time performance constraints, severe resource limitations, safety-critical aspects and cost pressures. For these reasons current systems are statically configured. This paper describes the dynamic run-time configuration aspects of DySCAS and focuses on the extent to which context-aware adaptation has been achieved in DySCAS, and the ways in which the various design and implementation challenges are met

    National security and social media monitoring: a presentation of the emotive and related systems

    Get PDF
    Today social media streams, such as Twitter, represent vast amounts of 'real-time' daily streaming data. Topics on these streams cover every range of human communication, ranging from banal banter, to serious reactions to events and information sharing regarding any imaginable product, item or entity. It has now become the norm for publicly visible events to break news over social media streams first, and only then followed by main stream media picking up on the news. It has been suggested in literature that social-media are a valid, valuable and effective real-time tool for gauging public subjective reactions to events and entities. Due to the vast big-data that is generated on a daily basis on social media streams, monitoring and gauging public reactions has to be automated and most of all scalable - i.e. human, expert monitoring is generally unfeasible. In this paper the EMOTIVE system, a project funded jointly by the DSTL (Defence Science and Technology Laboratory) and EPSRC, which focuses on monitoring fine-grained emotional responses relating to events of national security importance, will be presented. Similar systems for monitoring national security events are also presented and the primary traits of such national security social media monitoring systems are introduced and discussed

    Support dementia: using wearable assistive technology and analysing real-time data

    Get PDF
    Support provided to sufferers of Dementia by the National Health Service (NHS) is mainly in the form of personal attendants such as nurses and social workers. The main focus of this paper is to present how the use of assistive technologies can help early sufferers of Dementia patients to overcome barriers in achieving their daily activities and to illustrate how data analytics, such as Complex Event Processing (CEP) in real-time can allow better monitoring of these patients. This activity will contribute to research work which is to provide a suitable framework to accurately analyse real-time data from assistive technology and wearable devices for remote healthcare, particularly monitoring early sufferers of dementia in order to promote good quality independent living
    • …
    corecore