479 research outputs found

    Machine learning for the prediction of protein-protein interactions

    Get PDF
    The prediction of protein-protein interactions (PPI) has recently emerged as an important problem in the fields of bioinformatics and systems biology, due to the fact that most essential cellular processes are mediated by these kinds of interactions. In this thesis we focussed in the prediction of co-complex interactions, where the objective is to identify and characterize protein pairs which are members of the same protein complex. Although high-throughput methods for the direct identification of PPI have been developed in the last years. It has been demonstrated that the data obtained by these methods is often incomplete and suffers from high false-positive and false-negative rates. In order to deal with this technology-driven problem, several machine learning techniques have been employed in the past to improve the accuracy and trustability of predicted protein interacting pairs, demonstrating that the combined use of direct and indirect biological insights can improve the quality of predictive PPI models. This task has been commonly viewed as a binary classification problem. However, the nature of the data creates two major problems. Firstly, the imbalanced class problem due to the number of positive examples (pairs of proteins which really interact) being much smaller than the number of negative ones. Secondly, the selection of negative examples is based on some unreliable assumptions which could introduce some bias in the classification results. The first part of this dissertation addresses these drawbacks by exploring the use of one-class classification (OCC) methods to deal with the task of prediction of PPI. OCC methods utilize examples of just one class to generate a predictive model which is consequently independent of the kind of negative examples selected; additionally these approaches are known to cope with imbalanced class problems. We designed and carried out a performance evaluation study of several OCC methods for this task. We also undertook a comparative performance evaluation with several conventional learning techniques. Furthermore, we pay attention to a new potential drawback which appears to affect the performance of PPI prediction. This is associated with the composition of the positive gold standard set, which contain a high proportion of examples associated with interactions of ribosomal proteins. We demonstrate that this situation indeed biases the classification task, resulting in an over-optimistic performance result. The prediction of non-ribosomal PPI is a much more difficult task. We investigate some strategies in order to improve the performance of this subtask, integrating new kinds of data as well as combining diverse classification models generated from different sets of data. In this thesis, we undertook a preliminary validation study of the new PPI predicted by using OCC methods. To achieve this, we focus in three main aspects: look for biological evidence in the literature that support the new predictions; the analysis of predicted PPI networks properties; and the identification of highly interconnected groups of proteins which can be associated with new protein complexes. Finally, this thesis explores a slightly different area, related to the prediction of PPI types. This is associated with the classification of PPI structures (complexes) contained in the Protein Data Bank (PDB) data base according to its function and binding affinity. Considering the relatively reduced number of crystalized protein complexes available, it is not possible at the moment to link these results with the ones obtained previously for the prediction of PPI complexes. However, this could be possible in the near future when more PPI structures will be available

    Cell type identification, differential expression analysis and trajectory inference in single-cell transcriptomics

    Get PDF
    Single-cell RNA-sequencing (scRNA-seq) is a cutting-edge technology that enables to quantify the transcriptome, the set of expressed RNA transcripts, of a group of cells at the single-cell level. It represents a significant upgrade from bulk RNA-seq, which measures the combined signal of thousands of cells. Measuring gene expression by bulk RNA-seq is an invaluable tool for biomedical researchers who want to understand how cells alter their gene expression due to an illness, differentiation, ternal stimulus, or other events. Similarly, scRNA-seq has become an essential method for biomedical researchers, and it has brought several new applications previously unavailable with bulk RNA-seq. scRNA-seq has the same applications as bulk RNA-seq. However, the single-cell resolution also enables cell annotation based on gene markers of clusters, that is, cell populations that have been identified based on machine learning to be, on average, dissimilar at the transcriptomic level. Researchers can use the cell clusters to detect cell-type-specific gene expression changes between conditions such as case and control groups. Clustering can sometimes even discover entirely new cell types. Besides the cluster-level representation, the single-cell resolution also enables to model cells as a trajectory, representing how the cells are related at the cell level and what is the dynamic differentiation process that the cells undergo in a tissue. This thesis introduces new computational methods for cell type identification and trajectory inference from scRNA-seq data. A new cell type identification method (ILoReg) was proposed, which enables high-resolution clustering of cells into populations with subtle transcriptomic differences. In addition, two new trajectory inference methods were developed: scShaper, which is an accurate and robust method for inferring linear trajectories; and Totem, which is a user-friendly and flexible method for inferring tree-shaped trajectories. In addition, one of the works benchmarked methods for detecting cell-type-specific differential states from scRNA-seq data with multiple subjects per comparison group, requiring tailored methods to confront false discoveries. KEYWORDS: Single-cell RNA sequencing, transcriptome, cell type identification, trajectory inference, differential expressionYksisoluinen RNA-sekvensointi on huipputeknologia, joka mahdollistaa transkriptomin eli ilmentyneiden RNA-transkriptien laskennallisen määrittämisen joukolle soluja yhden solun tarkkuudella, ja sen kehittäminen oli merkittävä askel eteenpäin perinteisestä bulkki-RNA-sekvensoinnista, joka mittaa tuhansien solujen yhteistä signaalia. Bulkki-RNA-sekvensointi on tärkeä työväline biolääketieteen tutkijoille, jotka haluavat ymmärtää miten solut muuttavat geenien ilmentymistä sairauden, erilaistumisen, ulkoisen ärsykkeen tai muun tapahtuman seurauksena. Yksisoluisesta RNA-sekvensoinnista on vastaavasti kehittynyt tärkeä työväline tutkijoille, ja se on tuonut useita uusia sovelluksia. Yksisoluisella RNA-sekvensoinnilla on samat sovellukset kuin bulkki-RNA-sekvensoinnilla, mutta sen lisäksi se mahdollistaa solujen tunnistamisen geenimarkkerien perusteella. Geenimarkkerit etsitään tilastollisin menetelmin solupopulaatioille, joiden on tunnistettu koneoppimisen menetelmin muodostavan transkriptomitasolla keskenään erilaisia joukkoja eli klustereita. Tutkijat voivat hyödyntää soluklustereita tutkimaan geeniekspressioeroja solutyyppien sisällä esimerkiksi sairaiden ja terveiden välillä, ja joskus klusterointi voi jopa tunnistaa uusia solutyyppejä. Yksisolutason mittaukset mahdollistavat myös solujen mallintamisen trajektorina, joka esittää kuinka solut kehittyvät dynaamisesti toisistaan geenien ilmentymistä vaativien prosessien aikana. Tämä väitöskirja esittelee uusia laskennallisia menetelmiä solutyyppien ja trajektorien tunnistamiseen yksisoluisesta RNA-sekvensointidatasta. Väitöskirja esittelee uuden solutyyppitunnistusmenetelmän (ILoReg), joka mahdollistaa hienovaraisia geeniekspressioeroja sisältävien solutyyppien tunnistamisen. Sen lisäksi väitöskirjassa kehitettiin kaksi uutta trajektorin tunnistusmenetelmää: scShaper, joka on tarkka ja robusti menetelmä lineaaristen trajektorien tunnistamiseen, sekä Totem, joka on käyttäjäystävällinen ja joustava menetelmä puumallisten trajektorien tunnistamiseen. Lopuksi väitöskirjassa vertailtiin menetelmiä solutyyppien sisäisten geeniekspressioerojen tunnistamiseen ryhmien välillä, joissa on useita koehenkilöitä tai muita biologisia replikaatteja, mikä vaatii erityisiä menetelmiä väärien positiivisten löydösten vähentämiseen. ASIASANAT: yksisoluinen RNA-sekvensointi, klusterointi, trajektorin tunnistus, geeniekspressi

    Statistical Challenges and Methods for Missing and Imbalanced Data

    Get PDF
    Missing data remains a prevalent issue in every area of research. The impact of missing data, if not carefully handled, can be detrimental to any statistical analysis. Some statistical challenges associated with missing data include, loss of information, reduced statistical power and non-generalizability of findings in a study. It is therefore crucial that researchers pay close and particular attention when dealing with missing data. This multi-paper dissertation provides insight into missing data across different fields of study and addresses some of the above mentioned challenges of missing data through simulation studies and application to real datasets. The first paper of this dissertation addresses the dropout phenomenon in single-cell RNA (scRNA) sequencing through a comparative analyses of some existing scRNA sequencing techniques. The second paper of this work focuses on using simulation studies to assess whether it is appropriate to address the issue of non-detects in data using a traditional substitution approach, imputation, or a non-imputation based approach. The final paper of this dissertation presents an efficient strategy to address the issue of imbalance in data at any degree (whether moderate or highly imbalanced) by combining random undersampling with different weighting strategies. We conclude generally, based on findings from this dissertation that, missingness is not always lack of information but interestingness that needs to investigated

    A Computational Framework for Host-Pathogen Protein-Protein Interactions

    Get PDF
    Infectious diseases cause millions of illnesses and deaths every year, and raise great health concerns world widely. How to monitor and cure the infectious diseases has become a prevalent and intractable problem. Since the host-pathogen interactions are considered as the key infection processes at the molecular level for infectious diseases, there have been a large amount of researches focusing on the host-pathogen interactions towards the understanding of infection mechanisms and the development of novel therapeutic solutions. For years, the continuously development of technologies in biology has benefitted the wet lab-based experiments, such as small-scale biochemical, biophysical and genetic experiments and large-scale methods (for example yeast-two-hybrid analysis and cryogenic electron microscopy approach). As a result of past decades of efforts, there has been an exploded accumulation of biological data, which includes multi omics data, for example, the genomics data and proteomics data. Thus, an initiative review of omics data has been conducted in Chapter 2, which has exclusively demonstrated the recent update of ‘omics’ study, particularly focusing on proteomics and genomics. With the high-throughput technologies, the increasing amount of ‘omics’ data, including genomics and proteomics, has even further boosted. An upsurge of interest for data analytics in bioinformatics comes as no surprise to the researchers from a variety of disciplines. Specifically, the astonishing rate at which genomics and proteomics data are generated leads the researchers into the realm of ‘Big Data’ research. Chapter 2 is thus developed to providing an update of the omics background and the state-of-the-art developments in the omics area, with a focus on genomics data, from the perspective of big data analytics..

    Machine learning based data pre-processing for the purpose of medical data mining and decision support

    Get PDF
    Building an accurate and reliable model for prediction for different application domains, is one of the most significant challenges in knowledge discovery and data mining. Sometimes, improved data quality is itself the goal of the analysis, usually to improve processes in a production database and the designing of decision support. As medicine moves forward there is a need for sophisticated decision support systems that make use of data mining to support more orthodox knowledge engineering and Health Informatics practice. However, the real-life medical data rarely complies with the requirements of various data mining tools. It is often inconsistent, noisy, containing redundant attributes, in an unsuitable format, containing missing values and imbalanced with regards to the outcome class label.Many real-life data sets are incomplete, with missing values. In medical data mining the problem with missing values has become a challenging issue. In many clinical trials, the medical report pro-forma allow some attributes to be left blank, because they are inappropriate for some class of illness or the person providing the information feels that it is not appropriate to record the values for some attributes. The research reported in this thesis has explored the use of machine learning techniques as missing value imputation methods. The thesis also proposed a new way of imputing missing value by supervised learning. A classifier was used to learn the data patterns from a complete data sub-set and the model was later used to predict the missing values for the full dataset. The proposed machine learning based missing value imputation was applied on the thesis data and the results are compared with traditional Mean/Mode imputation. Experimental results show that all the machine learning methods which we explored outperformed the statistical method (Mean/Mode).The class imbalance problem has been found to hinder the performance of learning systems. In fact, most of the medical datasets are found to be highly imbalance in their class label. The solution to this problem is to reduce the gap between the minority class samples and the majority class samples. Over-sampling can be applied to increase the number of minority class sample to balance the data. The alternative to over-sampling is under-sampling where the size of majority class sample is reduced. The thesis proposed one cluster based under-sampling technique to reduce the gap between the majority and minority samples. Different under-sampling and over-sampling techniques were explored as ways to balance the data. The experimental results show that for the thesis data the new proposed modified cluster based under-sampling technique performed better than other class balancing techniques.In further research it is found that the class imbalance problem not only affects the classification performance but also has an adverse effect on feature selection. The thesis proposed a new framework for feature selection for class imbalanced datasets. The research found that, using the proposed framework the classifier needs less attributes to show high accuracy, and more attributes are needed if the data is highly imbalanced.The research described in the thesis contains the flowing four novel main contributions.a) Improved data mining methodology for mining medical datab) Machine learning based missing value imputation methodc) Cluster Based semi-supervised class balancing methodd) Feature selection framework for class imbalance datasetsThe performance analysis and comparative study show that the use of proposed method of missing value imputation, class balancing and feature selection framework can provide an effective approach to data preparation for building medical decision support

    Prediction of protein-protein interaction types using association rule based classification

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund - Copyright @ 2009 Park et alBackground: Protein-protein interactions (PPI) can be classified according to their characteristics into, for example obligate or transient interactions. The identification and characterization of these PPI types may help in the functional annotation of new protein complexes and in the prediction of protein interaction partners by knowledge driven approaches. Results: This work addresses pattern discovery of the interaction sites for four different interaction types to characterize and uses them for the prediction of PPI types employing Association Rule Based Classification (ARBC) which includes association rule generation and posterior classification. We incorporated domain information from protein complexes in SCOP proteins and identified 354 domain-interaction sites. 14 interface properties were calculated from amino acid and secondary structure composition and then used to generate a set of association rules characterizing these domain-interaction sites employing the APRIORI algorithm. Our results regarding the classification of PPI types based on a set of discovered association rules shows that the discriminative ability of association rules can significantly impact on the prediction power of classification models. We also showed that the accuracy of the classification can be improved through the use of structural domain information and also the use of secondary structure content. Conclusion: The advantage of our approach is that we can extract biologically significant information from the interpretation of the discovered association rules in terms of understandability and interpretability of rules. A web application based on our method can be found at http://bioinfo.ssu.ac.kr/~shpark/picasso/SHP was supported by the Korea Research Foundation Grant funded by the Korean Government(KRF-2005-214-E00050). JAR has been supported by the Programme Alβan, the European Union Programme of High level Scholarships for Latin America, scholarship E04D034854CL. SK was supported by Soongsil University Research Fund

    Pareto optimal-based feature selection framework for biomarker identification

    Get PDF
    Numerous computational techniques have been applied to identify the vital features of gene expression datasets in aiming to increase the efficiency of biomedical applications. The classification of microarray data samples is an important task to correctly recognise diseases by identifying small but clinically meaningful genes. However, identification of disease representative genes or biomarkers in high dimensional microarray gene-expression datasets remains a challenging task. This thesis investigates the viability of Pareto optimisation in identifying relevant subsets of biomarkers in high-dimensional microarray datasets. A robust Pareto Optimal based feature selection framework for biomarker discovery is then proposed. First, a two-stage feature selection approach using ensemble filter methods and Pareto Optimality is proposed. The integration of the multi-objective approach employing Pareto Optimality starts with well-known filter methods applied to various microarray gene-expression datasets. Although filter methods provide ranked lists of features, they do not give information about optimum subsets of features, which are namely genes in this study. To address this limitation, the Pareto Optimality is incorporated along with filter methods. The robustness of the proposed framework is successfully demonstrated on several well-known microarray gene expression datasets and it is shown to achieve comparable or up to 100% predictive accuracy with comparatively fewer features. Better performance results are obtained in comparison with other approaches, which are single-objective approaches. Furthermore, cross-validation and k-fold approaches are integrated into the framework, which can enhance the over-fitting problem and the gene selection process is subsequently more accurate under various conditions. Then the proposed framework is developed in several phases. The Sequential Forward Selection method (SFS) is first used to represent wrapper techniques, and the developed Pareto Optimality based framework is applied multiple times and tested on different data types. Given the nature of most real-life data, imbalanced classes are examined using the proposed framework. The classifier achieves high performance at a similar level of different cases using the proposed Pareto Optimal based feature selection framework, which has a novel structure for imbalanced classes. Comparable or better gene subset sizes are obtained using the proposed framework. Finally, handling missing data within the proposed framework is investigated and it is demonstrated that different data imputation methods can also help in the effective integration of various feature selection methods

    PRETICTIVE BIOINFORMATIC METHODS FOR ANALYZING GENES AND PROTEINS

    Get PDF
    Since large amounts of biological data are generated using various high-throughput technologies, efficient computational methods are important for understanding the biological meanings behind the complex data. Machine learning is particularly appealing for biological knowledge discovery. Tissue-specific gene expression and protein sumoylation play essential roles in the cell and are implicated in many human diseases. Protein destabilization is a common mechanism by which mutations cause human diseases. In this study, machine learning approaches were developed for predicting human tissue-specific genes, protein sumoylation sites and protein stability changes upon single amino acid substitutions. Relevant biological features were selected for input vector encoding, and machine learning algorithms, including Random Forests and Support Vector Machines, were used for classifier construction. The results suggest that the approaches give rise to more accurate predictions than previous studies and can provide valuable information for further experimental studies. Moreover, seeSUMO and MuStab web servers were developed to make the classifiers accessible to the biological research community. Structure-based methods can be used to predict the effects of amino acid substitutions on protein function and stability. The nonsynonymous Single Nucleotide Polymorphisms (nsSNPs) located at the protein binding interface have dramatic effects on protein-protein interactions. To model the effects, the nsSNPs at the interfaces of 264 protein-protein complexes were mapped on the protein structures using homology-based methods. The results suggest that disease-causing nsSNPs tend to destabilize the electrostatic component of the binding energy and nsSNPs at conserved positions have significant effects on binding energy changes. The structure-based approach was developed to quantitatively assess the effects of amino acid substitutions on protein stability and protein-protein interaction. It was shown that the structure-based analysis could help elucidate the mechanisms by which mutations cause human genetic disorders. These new bioinformatic methods can be used to analyze some interesting genes and proteins for human genetic research and improve our understanding of their molecular mechanisms underlying human diseases

    Deep Learning to Analyze RNA-Seq Gene Expression Data

    Get PDF
    Deep learning models are currently being applied in several areas with great success. However, their application for the analysis of high-throughput sequencing data remains a challenge for the research community due to the fact that this family of models are known to work very well in big datasets with lots of samples available, just the opposite scenario typically found in biomedical areas. In this work, a first approximation on the use of deep learning for the analysis of RNA-Seq gene expression profiles data is provided. Three public cancer-related databases are analyzed using a regularized linear model (standard LASSO) as baseline model, and two deep learning models that differ on the feature selection technique used prior to the application of a deep neural net model. The results indicate that a straightforward application of deep nets implementations available in public scientific tools and under the conditions described within this work is not enough to outperform simpler models like LASSO. Therefore, smarter and more complex ways that incorporate prior biological knowledge into the estimation procedure of deep learning models may be necessary in order to obtain better results in terms of predictive performance.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    corecore