184 research outputs found

    Institute of Terrestrial Ecology Annual Report 1975

    Get PDF

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Taxonomy and Ecology of Marine Algae

    Get PDF
    The term “algae” refers to a large diversity of unrelated phylogenetic entities, ranging from picoplanktonic cells to macroalgal kelps. Marine algae are an important primary producer in the marine food chain, responsible for the high primary production of coastal areas, providing food resources in situ for many grazing species of gastropods, peracarid crustaceans, sea urchins or fish. Recent findings indicate that marine environments have rapidly changed due to global warming over the past several decades. This change has led to significant variations in marine algal ecology. For example, a long-term increase in ocean temperatures due to global warming has facilitated the intensification of harmful algal blooms, which adversely impact public health, aquatic organisms, and aquaculture industries. Thus, extensive studies have been conducted, but there is still a gap in our understanding of the variation in their ecology in accordance with future marine environmental changes. To fill this gap, studies on the taxonomy and ecology of marine algae are highly necessary. We have invited algologists to submit research articles that enable us to advance our understanding of the taxonomy and ecology of marine algae. Fourteen papers have been collected so far, which cover different aspects of the taxonomy and ecology of marine algae, including understudied species, interspecific comparisons, and new techniques

    Microplastic pollution from synthetic textiles: quantitative evaluation and mitigation strategies

    Get PDF
    The present thesis focuses on microplastic pollution from synthetic textiles. Microplastics are defined as plastic fragments with dimensions less than 5 mm, which are gaining much attention due to their ubiquitous and possibly dangereous presence in marine environment. Washing processes of synthetic garments have been lately identified as responsible for about 35% of primary microplastic release in oceans and seas. Microplastics represent a threat for marine ecosystems, and consequently for humans, since they may be ingested by fauna, adsorb persistent organic pollutants and leach toxic additives. Moreover, recent concern has arisen regarding the possibility for humans to inhale microplastics released to air from wearing of synthetic garments, with still not understood consequences on health. In such scenario, this work has three major objectives: developing experimental procedures to quantify microfibres released to water and to air from synthetic clothes, investigating the role of textile characteristics and washing conditions in the release of microfibres, implementing mitigation strategies. First of all, two quantitative methods were developed to evaluate the amount of microfibres released during washing processes at lab and real scale. The two developed procedures were compared in terms of results, effectiveness, costs and time consume and proved to be a useful tool for the evaluation of the extent of the release from textiles, allowing the identification of specific trends in the microplastic release, as a function of the textile nature and geometry, different detergents and washing conditions. Then, a protocol involving tests with volunteers wearing commercial synthetic garments was set up to assess if microfibres are actually released by wearing clothes and if the quantities and dimensions pose a real threat for human health. Finally, mitigation actions were proposed, based on the development of innovative finishing treatments of synthetic textiles, aimed at creating a thin coating on the surface of fabrics that could protect them during the stresses of wearing and washing, reducing the release of microfibres. The ecosustainability of such treatments was ensured by using natural or biodegradable polymers as finishing materials, instead of the conventional synthetic ones. The effectiveness of such treatments in mitigating the release of microfibres was tested by washing tests at lab scale, showing a very promising reduction of almost 90% of microfibres released by untreated fabrics

    Public Health

    Get PDF
    Public health can be thought of as a series of complex systems. Many things that individual living in high income countries take for granted like the control of infectious disease, clean, potable water, low infant mortality rates require a high functioning systems comprised of numerous actors, locations and interactions to work. Many people only notice public health when that system fails. This book explores several systems in public health including aspects of the food system, health care system and emerging issues including waste minimization in nanosilver. Several chapters address global health concerns including non-communicable disease prevention, poverty and health-longevity medicine. The book also presents several novel methodologies for better modeling and assessment of essential public health issues

    Analysis and Characterization of Microplastics through Vibrational Spectroscopic Techniques for Environmental Monitoring

    Get PDF
    The pinnacle of technological advancements, especially plastic, has become one of the greatest environmental challenges that the earth has ever dealt with. In the face of ground-breaking versatility, plastic litter has marked its presence from the highest peaks to the deepest points in the oceans. Microplastics (MPs) are plastic particles with a size of less than 1 mm along their longest dimension, originating from a wide array of sources. The current public awareness of MP pollution is based on a huge amount of scientific research completed and published over the last fifteen years, which has just recently been highlighted by the media. It's been a protracted process that began with isolated examinations carried out by researchers who were ordinarily working in various fields of study but recognised the threat's potential. MPs are not traditional chemical contaminants, but rather a complex array of manmade detritus made up of various sizes, polymers, chemical additives, and sorbed pollution. The MP study is still in its infancy stage since it continues to be hampered by a lack of defined protocols and methodologies for investigating MPs in the laboratory. The use of MPs in laboratory research necessitates precise particle characterization to link the impacts of microplastics to their characteristics. To understand microplastic transit, deposition, and toxic effects, it is vital to distinguish between MP particles and those that are not. This thesis has primarily focused on the application of a new technology for analyzing MPs, based on Near-Infrared Spectroscopy (NIRs). As revealed by the bibliometric analysis of characterizing MPs by Fourier-Transformation Infrared Spectroscopy (FTIR) and Near-Infrared Spectroscopy, NIRs have only lately been applied, notably in the form of the miniaturized spectrometer (NIRs). Although NIR spectroscopy has been used as a standard tool for online quality assurance in food manufacturing and pharmaceuticals for decades, its ability to analyse microplastics in various environmental matrices has only recently been recognized. The workflow of this thesis begins with the use of handheld MicroNIR to analyse urban plastic garbage and construct an in-house NIR spectrum library, showcasing the usage of portable technology in the recycling sector. Because most libraries are constructed with virgin polymers, spectral shifts caused by MPs degradation are frequently missed. As a result, a new, more durable library searching algorithm capable of dealing with the difficulty of comparing degraded MPs to pristine polymer references was necessary. The second section discussed the significance of using reference materials in MP research and compares three techniques for producing MPs for research laboratories. This work will make it easier to comprehend the morphologies of MPs produced from the same parent particle using diverse techniques in a short period, allowing MP research to accelerate. The third section is based on the proof-of-concept study to analyse mixtures of microplastics through a handheld Near-Infrared Spectrometer. Given that, this study has proven the possibility of a portable tiny near-infrared spectrometer (MicroNIR) paired with chemometric methodologies for the measurement of secondary MPs mixes created at a laboratory scale for the first time. Extraction and purification are followed by identification and quantification in the MP analysis. The extraction of MPs from any environmental matrix is the most important phase since it is controlled by the matrix type and microplastic's size, shape, and density. As a result, the extraction technique should be tailored to the type of matrix under consideration. Following this idea, a comprehensive description of microplastic extraction processes distinguished by environmental matrix is offered at the end of this thesis in the form of a review. With concluding remarks, the final chapter gives a glimpse into the study's future prospects.The pinnacle of technological advancements, especially plastic, has become one of the greatest environmental challenges that the earth has ever dealt with. In the face of ground-breaking versatility, plastic litter has marked its presence from the highest peaks to the deepest points in the oceans. Microplastics (MPs) are plastic particles with a size of less than 1 mm along their longest dimension, originating from a wide array of sources. The current public awareness of MP pollution is based on a huge amount of scientific research completed and published over the last fifteen years, which has just recently been highlighted by the media. It's been a protracted process that began with isolated examinations carried out by researchers who were ordinarily working in various fields of study but recognised the threat's potential. MPs are not traditional chemical contaminants, but rather a complex array of manmade detritus made up of various sizes, polymers, chemical additives, and sorbed pollution. The MP study is still in its infancy stage since it continues to be hampered by a lack of defined protocols and methodologies for investigating MPs in the laboratory. The use of MPs in laboratory research necessitates precise particle characterization to link the impacts of microplastics to their characteristics. To understand microplastic transit, deposition, and toxic effects, it is vital to distinguish between MP particles and those that are not. This thesis has primarily focused on the application of a new technology for analyzing MPs, based on Near-Infrared Spectroscopy (NIRs). As revealed by the bibliometric analysis of characterizing MPs by Fourier-Transformation Infrared Spectroscopy (FTIR) and Near-Infrared Spectroscopy, NIRs have only lately been applied, notably in the form of the miniaturized spectrometer (NIRs). Although NIR spectroscopy has been used as a standard tool for online quality assurance in food manufacturing and pharmaceuticals for decades, its ability to analyse microplastics in various environmental matrices has only recently been recognized. The workflow of this thesis begins with the use of handheld MicroNIR to analyse urban plastic garbage and construct an in-house NIR spectrum library, showcasing the usage of portable technology in the recycling sector. Because most libraries are constructed with virgin polymers, spectral shifts caused by MPs degradation are frequently missed. As a result, a new, more durable library searching algorithm capable of dealing with the difficulty of comparing degraded MPs to pristine polymer references was necessary. The second section discussed the significance of using reference materials in MP research and compares three techniques for producing MPs for research laboratories. This work will make it easier to comprehend the morphologies of MPs produced from the same parent particle using diverse techniques in a short period, allowing MP research to accelerate. The third section is based on the proof-of-concept study to analyse mixtures of microplastics through a handheld Near-Infrared Spectrometer. Given that, this study has proven the possibility of a portable tiny near-infrared spectrometer (MicroNIR) paired with chemometric methodologies for the measurement of secondary MPs mixes created at a laboratory scale for the first time. Extraction and purification are followed by identification and quantification in the MP analysis. The extraction of MPs from any environmental matrix is the most important phase since it is controlled by the matrix type and microplastic's size, shape, and density. As a result, the extraction technique should be tailored to the type of matrix under consideration. Following this idea, a comprehensive description of microplastic extraction processes distinguished by environmental matrix is offered at the end of this thesis in the form of a review. With concluding remarks, the final chapter gives a glimpse into the study's future prospects

    Study of areas and development strategy for regional planning in East Pakistan.

    Get PDF
    Massachusetts Institute of Technology. Dept. of City and Regional Planning. Thesis. 1965. M.C.P.Bibliography: leaves 178-180.M.C.P

    Play Among Books

    Get PDF
    How does coding change the way we think about architecture? Miro Roman and his AI Alice_ch3n81 develop a playful scenario in which they propose coding as the new literacy of information. They convey knowledge in the form of a project model that links the fields of architecture and information through two interwoven narrative strands in an “infinite flow” of real books

    Microplastics Degradation and Characterization

    Get PDF
    In the last decade, issues related to pollution from microplastics in all environmental compartments and the associated health and environmental risks have been the focus of intense social, media, and political attention worldwide. The assessment, quantification, and study of the degradation processes of plastic debris in the ecosystem and its interaction with biota have been and are still the focus of intense multidisciplinary research. Plastic particles in the range from 1 to 5 mm and those in the sub-micrometer range are commonly denoted as microplastics and nanoplastics, respectively. Microplastics (MPs) are being recognized as nearly ubiquitous pollutants in water bodies, but their actual concentration, distribution, and effects on natural waters, sediments, and biota are still largely unknown. Contamination by microplastics of agricultural soil and other environmental areas is also becoming a matter of concern. Sampling, separation, detection, characterization and evaluating the degradation pathways of micro- and nano-plastic pollutants dispersed in the environment is a challenging and critical goal to understand their distribution, fate, and the related hazards for ecosystems. Given the interest in this topic, this Special Issue, entitled “Microplastics Degradation and Characterization”, is concerned with the latest developments in the study of microplastics
    • …
    corecore