3,590 research outputs found

    A pattern language for parallelizing irregular algorithms

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia InformáticaIn irregular algorithms, data set’s dependences and distributions cannot be statically predicted. This class of algorithms tends to organize computations in terms of data locality instead of parallelizing control in multiple threads. Thus, opportunities for exploiting parallelism vary dynamically, according to how the algorithm changes data dependences. As such, effective parallelization of such algorithms requires new approaches that account for that dynamic nature. This dissertation addresses the problem of building efficient parallel implementations of irregular algorithms by proposing to extract, analyze and document patterns of concurrency and parallelism present in the Galois parallelization framework for irregular algorithms. Patterns capture formal representations of a tangible solution to a problem that arises in a well defined context within a specific domain. We document the said patterns in a pattern language, i.e., a set of inter-dependent patterns that compose well-documented template solutions that can be reused whenever a certain problem arises in a well-known context

    Vectorizing unstructured mesh computations for many-core architectures.

    Get PDF
    Achieving optimal performance on the latest multi-core and many-core architectures increasingly depends on making efficient use of the hardware's vector units. This paper presents results on achieving high performance through vectorization on CPUs and the Xeon-Phi on a key class of irregular applications: unstructured mesh computations. Using single instruction multiple thread (SIMT) and single instruction multiple data (SIMD) programming models, we show how unstructured mesh computations map to OpenCL or vector intrinsics through the use of code generation techniques in the OP2 Domain Specific Library and explore how irregular memory accesses and race conditions can be organized on different hardware. We benchmark Intel Xeon CPUs and the Xeon-Phi, using a tsunami simulation and a representative CFD benchmark. Results are compared with previous work on CPUs and NVIDIA GPUs to provide a comparison of achievable performance on current many-core systems. We show that auto-vectorization and the OpenCL SIMT model do not map efficiently to CPU vector units because of vectorization issues and threading overheads. In contrast, using SIMD vector intrinsics imposes some restrictions and requires more involved programming techniques but results in efficient code and near-optimal performance, two times faster than non-vectorized code. We observe that the Xeon-Phi does not provide good performance for these applications but is still comparable with a pair of mid-range Xeon chips

    Gunrock: GPU Graph Analytics

    Full text link
    For large-scale graph analytics on the GPU, the irregularity of data access and control flow, and the complexity of programming GPUs, have presented two significant challenges to developing a programmable high-performance graph library. "Gunrock", our graph-processing system designed specifically for the GPU, uses a high-level, bulk-synchronous, data-centric abstraction focused on operations on a vertex or edge frontier. Gunrock achieves a balance between performance and expressiveness by coupling high performance GPU computing primitives and optimization strategies with a high-level programming model that allows programmers to quickly develop new graph primitives with small code size and minimal GPU programming knowledge. We characterize the performance of various optimization strategies and evaluate Gunrock's overall performance on different GPU architectures on a wide range of graph primitives that span from traversal-based algorithms and ranking algorithms, to triangle counting and bipartite-graph-based algorithms. The results show that on a single GPU, Gunrock has on average at least an order of magnitude speedup over Boost and PowerGraph, comparable performance to the fastest GPU hardwired primitives and CPU shared-memory graph libraries such as Ligra and Galois, and better performance than any other GPU high-level graph library.Comment: 52 pages, invited paper to ACM Transactions on Parallel Computing (TOPC), an extended version of PPoPP'16 paper "Gunrock: A High-Performance Graph Processing Library on the GPU

    An Analysis of Composability and Composition Anomalies

    Get PDF
    The separation of concerns principle aims at decomposing a given design problem into concerns that are mapped to multiple independent software modules. The application of this principle eases the composition of the concerns and as such supports composability. Unfortunately, a clean separation (and composition of concerns) at the design level does not always imply the composability of the concerns at the implementation level. The composability might be reduced due to limitations of the implementation abstractions and composition mechanisms. The paper introduces the notion of composition anomaly to describe a general set of unexpected composition problems that arise when mapping design concerns to implementation concerns. To distinguish composition anomalies from other composition problems the requirements for composability at the design level is provided. The ideas are illustrated for a distributed newsgroup system

    A Survey of Graph Pre-processing Methods: From Algorithmic to Hardware Perspectives

    Full text link
    Graph-related applications have experienced significant growth in academia and industry, driven by the powerful representation capabilities of graph. However, efficiently executing these applications faces various challenges, such as load imbalance, random memory access, etc. To address these challenges, researchers have proposed various acceleration systems, including software frameworks and hardware accelerators, all of which incorporate graph pre-processing (GPP). GPP serves as a preparatory step before the formal execution of applications, involving techniques such as sampling, reorder, etc. However, GPP execution often remains overlooked, as the primary focus is directed towards enhancing graph applications themselves. This oversight is concerning, especially considering the explosive growth of real-world graph data, where GPP becomes essential and even dominates system running overhead. Furthermore, GPP methods exhibit significant variations across devices and applications due to high customization. Unfortunately, no comprehensive work systematically summarizes GPP. To address this gap and foster a better understanding of GPP, we present a comprehensive survey dedicated to this area. We propose a double-level taxonomy of GPP, considering both algorithmic and hardware perspectives. Through listing relavent works, we illustrate our taxonomy and conduct a thorough analysis and summary of diverse GPP techniques. Lastly, we discuss challenges in GPP and potential future directions

    Parallel scheduling of recursively defined arrays

    Get PDF
    A new method of automatic generation of concurrent programs which constructs arrays defined by sets of recursive equations is described. It is assumed that the time of computation of an array element is a linear combination of its indices, and integer programming is used to seek a succession of hyperplanes along which array elements can be computed concurrently. The method can be used to schedule equations involving variable length dependency vectors and mutually recursive arrays. Portions of the work reported here have been implemented in the PS automatic program generation system

    MAGDA: A Mobile Agent based Grid Architecture

    Get PDF
    Mobile agents mean both a technology and a programming paradigm. They allow for a flexible approach which can alleviate a number of issues present in distributed and Grid-based systems, by means of features such as migration, cloning, messaging and other provided mechanisms. In this paper we describe an architecture (MAGDA – Mobile Agent based Grid Architecture) we have designed and we are currently developing to support programming and execution of mobile agent based application upon Grid systems
    • …
    corecore