3,432 research outputs found

    Vertex-Coloring 2-Edge-Weighting of Graphs

    Full text link
    A kk-{\it edge-weighting} ww of a graph GG is an assignment of an integer weight, w(e){1,,k}w(e)\in \{1,\dots, k\}, to each edge ee. An edge weighting naturally induces a vertex coloring cc by defining c(u)=uew(e)c(u)=\sum_{u\sim e} w(e) for every uV(G)u \in V(G). A kk-edge-weighting of a graph GG is \emph{vertex-coloring} if the induced coloring cc is proper, i.e., c(u)c(v)c(u) \neq c(v) for any edge uvE(G)uv \in E(G). Given a graph GG and a vertex coloring c0c_0, does there exist an edge-weighting such that the induced vertex coloring is c0c_0? We investigate this problem by considering edge-weightings defined on an abelian group. It was proved that every 3-colorable graph admits a vertex-coloring 33-edge-weighting \cite{KLT}. Does every 2-colorable graph (i.e., bipartite graphs) admit a vertex-coloring 2-edge-weighting? We obtain several simple sufficient conditions for graphs to be vertex-coloring 2-edge-weighting. In particular, we show that 3-connected bipartite graphs admit vertex-coloring 2-edge-weighting

    Group twin coloring of graphs

    Full text link
    For a given graph GG, the least integer k2k\geq 2 such that for every Abelian group G\mathcal{G} of order kk there exists a proper edge labeling f:E(G)Gf:E(G)\rightarrow \mathcal{G} so that xN(u)f(xu)xN(v)f(xv)\sum_{x\in N(u)}f(xu)\neq \sum_{x\in N(v)}f(xv) for each edge uvE(G)uv\in E(G) is called the \textit{group twin chromatic index} of GG and denoted by χg(G)\chi'_g(G). This graph invariant is related to a few well-known problems in the field of neighbor distinguishing graph colorings. We conjecture that χg(G)Δ(G)+3\chi'_g(G)\leq \Delta(G)+3 for all graphs without isolated edges, where Δ(G)\Delta(G) is the maximum degree of GG, and provide an infinite family of connected graph (trees) for which the equality holds. We prove that this conjecture is valid for all trees, and then apply this result as the base case for proving a general upper bound for all graphs GG without isolated edges: χg(G)2(Δ(G)+col(G))5\chi'_g(G)\leq 2(\Delta(G)+{\rm col}(G))-5, where col(G){\rm col}(G) denotes the coloring number of GG. This improves the best known upper bound known previously only for the case of cyclic groups Zk\mathbb{Z}_k

    The 1-2-3 Conjecture for Hypergraphs

    Full text link
    A weighting of the edges of a hypergraph is called vertex-coloring if the weighted degrees of the vertices yield a proper coloring of the graph, i.e., every edge contains at least two vertices with different weighted degrees. In this paper we show that such a weighting is possible from the weight set {1,2,...,r+1} for all hypergraphs with maximum edge size r>3 and not containing edges solely consisting of identical vertices. The number r+1 is best possible for this statement. Further, the weight set {1,2,3,4,5} is sufficient for all hypergraphs with maximum edge size 3, up to some trivial exceptions.Comment: 12 page

    A sharp threshold for random graphs with a monochromatic triangle in every edge coloring

    Full text link
    Let R\R be the set of all finite graphs GG with the Ramsey property that every coloring of the edges of GG by two colors yields a monochromatic triangle. In this paper we establish a sharp threshold for random graphs with this property. Let G(n,p)G(n,p) be the random graph on nn vertices with edge probability pp. We prove that there exists a function c^=c^(n)\hat c=\hat c(n) with 000 0, as nn tends to infinity Pr[G(n,(1-\eps)\hat c/\sqrt{n}) \in \R ] \to 0 and Pr [ G(n,(1+\eps)\hat c/\sqrt{n}) \in \R ] \to 1. A crucial tool that is used in the proof and is of independent interest is a generalization of Szemer\'edi's Regularity Lemma to a certain hypergraph setting.Comment: 101 pages, Final version - to appear in Memoirs of the A.M.

    Upper tails and independence polynomials in random graphs

    Full text link
    The upper tail problem in the Erd\H{o}s--R\'enyi random graph GGn,pG\sim\mathcal{G}_{n,p} asks to estimate the probability that the number of copies of a graph HH in GG exceeds its expectation by a factor 1+δ1+\delta. Chatterjee and Dembo showed that in the sparse regime of p0p\to 0 as nn\to\infty with pnαp \geq n^{-\alpha} for an explicit α=αH>0\alpha=\alpha_H>0, this problem reduces to a natural variational problem on weighted graphs, which was thereafter asymptotically solved by two of the authors in the case where HH is a clique. Here we extend the latter work to any fixed graph HH and determine a function cH(δ)c_H(\delta) such that, for pp as above and any fixed δ>0\delta>0, the upper tail probability is exp[(cH(δ)+o(1))n2pΔlog(1/p)]\exp[-(c_H(\delta)+o(1))n^2 p^\Delta \log(1/p)], where Δ\Delta is the maximum degree of HH. As it turns out, the leading order constant in the large deviation rate function, cH(δ)c_H(\delta), is governed by the independence polynomial of HH, defined as PH(x)=iH(k)xkP_H(x)=\sum i_H(k) x^k where iH(k)i_H(k) is the number of independent sets of size kk in HH. For instance, if HH is a regular graph on mm vertices, then cH(δ)c_H(\delta) is the minimum between 12δ2/m\frac12 \delta^{2/m} and the unique positive solution of PH(x)=1+δP_H(x) = 1+\delta
    corecore