86 research outputs found

    Custom Integrated Circuits

    Get PDF
    Contains reports on nine research projects.Analog Devices, Inc.International Business Machines CorporationJoint Services Electronics Program Contract DAAL03-89-C-0001U.S. Air Force - Office of Scientific Research Contract AFOSR 86-0164BDuPont CorporationNational Science Foundation Grant MIP 88-14612U.S. Navy - Office of Naval Research Contract N00014-87-K-0825American Telephone and TelegraphDigital Equipment CorporationNational Science Foundation Grant MIP 88-5876

    Custom Integrated Circuits

    Get PDF
    Contains reports on twelve research projects.Analog Devices, Inc.International Business Machines, Inc.Joint Services Electronics Program (Contract DAAL03-86-K-0002)Joint Services Electronics Program (Contract DAAL03-89-C-0001)U.S. Air Force - Office of Scientific Research (Grant AFOSR 86-0164)Rockwell International CorporationOKI Semiconductor, Inc.U.S. Navy - Office of Naval Research (Contract N00014-81-K-0742)Charles Stark Draper LaboratoryNational Science Foundation (Grant MIP 84-07285)National Science Foundation (Grant MIP 87-14969)Battelle LaboratoriesNational Science Foundation (Grant MIP 88-14612)DuPont CorporationDefense Advanced Research Projects Agency/U.S. Navy - Office of Naval Research (Contract N00014-87-K-0825)American Telephone and TelegraphDigital Equipment CorporationNational Science Foundation (Grant MIP-88-58764

    Accelerating Parallel Verification via Complementary Property Partitioning and Strategy Exploration

    Get PDF
    Industrial hardware verification tasks often require checking a large number of properties within a testbench. Verification tools often utilize parallelism in their solving orchestration to improve scalability, either in portfolio mode where different solver strategies run concurrently, or in partitioning mode where disjoint property subsets are verified independently. While most tools focus solely upon reducing end-to-end walltime, reducing overall CPU-time is a comparably-important goal influencing power consumption, competition for available machines, and IT costs. Portfolio approaches often degrade into highly-redundant work across processes, where similar strategies address properties in nearly-identical order. Partitioning should take property affinity into account, atomically verifying high-affinity properties to minimize redundant work of applying identical strategies on individual properties with nearly-identical logic cones. In this paper, we improve multi-property parallel verification with respect to both wall- and CPU-time. We extend affinity-based partitioning to guarantee complete utilization of available processes, with provable partition quality. We propose methods to minimize redundant computation, and dynamically optimize work distribution. We deploy our techniques in a sequential redundancy removal framework, using localization to solve non-inductive properties. Our techniques offer a median 2.4× speedup yielding 18.1% more property solves, as demonstrated by extensive experiments

    Custom Integrated Circuits

    Get PDF
    Contains reports on ten research projects.Analog Devices, Inc.IBM CorporationNational Science Foundation/Defense Advanced Research Projects Agency Grant MIP 88-14612Analog Devices Career Development Assistant ProfessorshipU.S. Navy - Office of Naval Research Contract N0014-87-K-0825AT&TDigital Equipment CorporationNational Science Foundation Grant MIP 88-5876

    Optimized synthesis of self-testable finite state machines

    Get PDF
    A synthesis procedure for self-testable finite state machines is presented. Testability comes under consideration when the behavioral description of the circuit is being transformed into a structural description. To this end, a novel state encoding algorithm, as well as a modified self-test architecture, is developed. Experimental results show that this approach leads to a significant reduction of hardware overhead. Self-testing circuits generally employ linear feedback shift registers for pattern generation. The impact of choosing a particular feedback polynomial on the state encoding is discussed

    An extensive English language bibliography on graph theory and its applications

    Get PDF
    Bibliography on graph theory and its application

    An efficient procedure for the synthesis of fast self-testable controller structures

    Get PDF
    The BIST implementation of a conventionally synthesized controller in most cases requires the integration of an additional register only for rest purposes. This leads to some serious drawbacks concerning the fault coverage, the system speed and the area overhead. A synthesis technique is presented which uses the additional test register also to implement the system function by supporting self-testable pipeline-like controller structures. It will be shown, that if the need of two different registers in the final structure is already taken into account during synthesis, then the overall number of flipflops can be reduced, and the fault coverage and system speed call be enhanced. The presented algorithm constructs realizations of a given finite state machine a self-testable structure. The efficiency of the procedure is ensured by a very precise characterization of the space of suitable realizations, which avoids the computational overhead of previously published algorithms

    Exploiting Satisfiability Solvers for Efficient Logic Synthesis

    Get PDF
    Logic synthesis is an important part of electronic design automation (EDA) flows, which enable the implementation of digital systems. As the design size and complexity increase, the data structures and algorithms for logic synthesis must adapt and improve in order to keep pace and to maintain acceptable runtime and high-quality results. Large circuits were often represented using binary decision diagrams (BDDs) that were rapidly adopted by logic synthesis tools beginning in the 1980s. Nowadays, BDD-based algorithms are still enhanced, but the possibilities for improvement are somewhat saturated after some 35 years of research. Alternatively, the first EDA applications that exploit Boolean satisfiability (SAT) were developed in the 1990s. Despite the worst-case exponential runtime of SAT solvers, rapid progress in their performance enabled the creation of efficient SAT-based algorithms. Yet, logic synthesis started using SAT solvers more diffusely only in the last decade. Therefore, thorough research is still required both for exploiting SAT solvers and for encoding logic synthesis problems into SAT. Our main goal in this thesis is to facilitate and promote the further integration of SAT solvers into EDA by proposing and evaluating novel SAT-based algorithms that can be used as building blocks in logic synthesis tools. First, we propose a rapid algorithm for LEXSAT, which generates satisfying assignments in lexicographic order. We show that LEXSAT can bring canonicity, which guarantees the generation of unique results, when using SAT solvers in EDA applications. Next, we present a new SAT-based algorithm that progressively generates irredundant sums of products (SOPs), which still play a crucial role in many logic synthesis tools. Using LEXSAT, for the first time, we can generate canonical SAT-based SOPs that, much like BDD-based SOPs, are unique for a given function and variable order but could relax canonicity in order to improve speed and scalability. Unlike BDDs, due to its progressive nature, our algorithm can generate partial SOPs for applications that can work with incomplete circuit functionality. It is noteworthy that both LEXSAT and the SAT-based SOPs are applicable beyond logic synthesis and EDA. Finally, we focus on resubstitution, which reimplements a given Boolean function as a new function that depends on a set of existing functions called divisors. We propose the carving interpolation algorithm that, unlike the traditional Craig interpolation, forces the use of a specific divisor as an input of the new function. This is particularly useful for global circuit restructuring and for some synthesis-based engineering change order (ECO) algorithms. Furthermore, we compare two existing SAT-based methodologies for resubstitution, which are used for post-mapping logic optimisation. The first methodology combines SAT-based functional dependency checking and Craig interpolation that are also used for our carving interpolation; the second methodology is based on cube enumeration and is similar to the SAT-based SOP generation. The initial implementations of our novel SAT-based algorithms offer either better performance or new features, or both, compared to their state-of-the-art versions. As the results indicate, a further thorough development of SAT-based algorithms for logic synthesis, like the one performed for BDDs in the past, can help overcome existing limitations and keep up with growing designs and design complexity

    NASA Space Engineering Research Center for VLSI systems design

    Get PDF
    This annual review reports the center's activities and findings on very large scale integration (VLSI) systems design for 1990, including project status, financial support, publications, the NASA Space Engineering Research Center (SERC) Symposium on VLSI Design, research results, and outreach programs. Processor chips completed or under development are listed. Research results summarized include a design technique to harden complementary metal oxide semiconductors (CMOS) memory circuits against single event upset (SEU); improved circuit design procedures; and advances in computer aided design (CAD), communications, computer architectures, and reliability design. Also described is a high school teacher program that exposes teachers to the fundamentals of digital logic design
    • …
    corecore