85,057 research outputs found

    Irreducibility properties of Keller maps

    Get PDF
    Jedrzejewicz showed that a polynomial map over a field of characteristic zero is invertible, if and only if the corresponding endomorphism maps irreducible polynomials to irreducible polynomials. Furthermore, he showed that a polynomial map over a field of characteristic zero is a Keller map, if and only if the corresponding endomorphism maps irreducible polynomials to square-free polynomials. We show that the latter endomorphism maps other square-free polynomials to square-free polynomials as well. In connection with the above classification of invertible polynomial maps and the Jacobian Conjecture, we study irreducible properties of several types of Keller maps, to each of which the Jacobian Conjecture can be reduced. Herewith, we generalize the result of Bakalarski, that the components of cubic homogeneous Keller maps with a symmetric Jacobian matrix (over C and hence any field of characteristic zero) are irreducible. Furthermore, we show that the Jacobian Conjecture can even be reduced to any of these types with the extra condition that each affinely linear combination of the components of the polynomial map is irreducible. This is somewhat similar to reducing the planar Jacobian Conjecture to the so-called (planar) weak Jacobian Conjecture by Kaliman.Comment: 22 page

    Oka's conjecture on irreducible plane sextics

    Get PDF
    We partially prove and partially disprove Oka's conjecture on the fundamental group/Alexander polynomial of an irreducible plane sextic. Among other results, we enumerate all irreducible sextics with simple singularities admitting dihedral coverings and find examples of Alexander equivalent Zariski pairs of irreducible sextics.Comment: Final version accepted for publicatio

    Characterizing Triviality of the Exponent Lattice of A Polynomial through Galois and Galois-Like Groups

    Full text link
    The problem of computing \emph{the exponent lattice} which consists of all the multiplicative relations between the roots of a univariate polynomial has drawn much attention in the field of computer algebra. As is known, almost all irreducible polynomials with integer coefficients have only trivial exponent lattices. However, the algorithms in the literature have difficulty in proving such triviality for a generic polynomial. In this paper, the relations between the Galois group (respectively, \emph{the Galois-like groups}) and the triviality of the exponent lattice of a polynomial are investigated. The \bbbq\emph{-trivial} pairs, which are at the heart of the relations between the Galois group and the triviality of the exponent lattice of a polynomial, are characterized. An effective algorithm is developed to recognize these pairs. Based on this, a new algorithm is designed to prove the triviality of the exponent lattice of a generic irreducible polynomial, which considerably improves a state-of-the-art algorithm of the same type when the polynomial degree becomes larger. In addition, the concept of the Galois-like groups of a polynomial is introduced. Some properties of the Galois-like groups are proved and, more importantly, a sufficient and necessary condition is given for a polynomial (which is not necessarily irreducible) to have trivial exponent lattice.Comment: 19 pages,2 figure
    corecore