359 research outputs found

    Testing the black hole "no-hair" hypothesis

    Full text link
    Black holes in General Relativity are very simple objects. This property, that goes under the name of "no-hair," has been refined in the last few decades and admits several versions. The simplicity of black holes makes them ideal testbeds of fundamental physics and of General Relativity itself. Here we discuss the no-hair property of black holes, how it can be measured in the electromagnetic or gravitational window, and what it can possibly tell us about our universe.Comment: Commissioned by Classical and Quantum Gravit

    Bondi Accretion in the Spherically Symmetric Johannsen-Psaltis Spacetime

    Full text link
    The Johannsen-Psaltis spacetime explicitly violates the no hair theorem. It describes rotating black holes with scalar hair in the form of parametric deviations from the Kerr metric. In principle, black hole solutions in any modified theory of gravity could be written in terms of the Johannsen-Psaltis metric. We study the accretion of gas onto a static limit of this spacetime. We utilise a recently proposed pseudo-Newtonian formulation of the dynamics around arbitrary static, spherically symmetric spacetimes. We obtain a potential that generalises the Paczy\'nski-Wiita potential to the static Johannsen-Psaltis metric. We also perform a fully relativistic analysis of the geodesic equations in the static Johannsen-Psaltis spacetime. We find that positive values of the scalar hair parameter, ϵ3\epsilon_{3}, lower the accretion rate and vice versa. Similarly, positive (negative) values of ϵ3\epsilon_{3} reduce (increase) the gravitational acceleration of radially infalling massive particles.Comment: 13 Pages, 1 figure, submitted to CQ

    Foundations of Black Hole Accretion Disk Theory

    Get PDF
    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).Comment: 91 pages, 23 figures, final published version available at http://www.livingreviews.org/lrr-2013-

    Testing the gravitational phenomenology of compact objects: superradiance, scalarization and screening mechanisms

    Get PDF
    In the last decades, an interesting variety of extended models of gravity has been proposed with the goal of capturing cosmological effects such as the accelerated phases of expansion and/or the so-called "dark sector" of our universe. In parallel, the quest for a full-fledged theory of quantum gravity proceeds by investigating the low-energy limit of candidate models. Many of these modified gravity models might leave imprints in the physics of compact objects and with gravitational-wave astronomy we have the unprecedented opportunity to test them against data with improving accuracy. A popular class of models (scalar-tensor theories) extends the field content of general relativity with an additional scalar field. These theories provide multiple examples where black hole and neutron star physics deviates from general relativity and can be constrained with observations. In this sense, superradiance and spontaneous growth of scalar fields around black holes and neutron stars are potentially detectable signatures of new physics. Screening mechanisms can in principle hide scalar effects, but their effectiveness in the strong-field regime is still largely unmodeled. In this thesis I briefly review the traditional tests of gravity, from the weak-field observations to gravitational-wave tests, before moving to discuss in details a collection of personal contributions in modeling the aforementioned scalar effects

    Testing the nature of dark compact objects: a status report

    Full text link
    Very compact objects probe extreme gravitational fields and may be the key to understand outstanding puzzles in fundamental physics. These include the nature of dark matter, the fate of spacetime singularities, or the loss of unitarity in Hawking evaporation. The standard astrophysical description of collapsing objects tells us that massive, dark and compact objects are black holes. Any observation suggesting otherwise would be an indication of beyond-the-standard-model physics. Null results strengthen and quantify the Kerr black hole paradigm. The advent of gravitational-wave astronomy and precise measurements with very long baseline interferometry allow one to finally probe into such foundational issues. We overview the physics of exotic dark compact objects and their observational status, including the observational evidence for black holes with current and future experiments.Comment: 76 pages + references. Invited review article for Living Reviews in Relativity. v3: Overall improvements and references added, a few typos corrected. Version to appear in LR
    • …
    corecore