1,034 research outputs found

    Pigment Melanin: Pattern for Iris Recognition

    Full text link
    Recognition of iris based on Visible Light (VL) imaging is a difficult problem because of the light reflection from the cornea. Nonetheless, pigment melanin provides a rich feature source in VL, unavailable in Near-Infrared (NIR) imaging. This is due to biological spectroscopy of eumelanin, a chemical not stimulated in NIR. In this case, a plausible solution to observe such patterns may be provided by an adaptive procedure using a variational technique on the image histogram. To describe the patterns, a shape analysis method is used to derive feature-code for each subject. An important question is how much the melanin patterns, extracted from VL, are independent of iris texture in NIR. With this question in mind, the present investigation proposes fusion of features extracted from NIR and VL to boost the recognition performance. We have collected our own database (UTIRIS) consisting of both NIR and VL images of 158 eyes of 79 individuals. This investigation demonstrates that the proposed algorithm is highly sensitive to the patterns of cromophores and improves the iris recognition rate.Comment: To be Published on Special Issue on Biometrics, IEEE Transaction on Instruments and Measurements, Volume 59, Issue number 4, April 201

    A Survey of Iris Recognition System

    Get PDF
    The uniqueness of iris texture makes it one of the reliable physiological biometric traits compare to the other biometric traits. In this paper, we investigate a different level of fusion approach in iris image. Although, a number of iris recognition methods has been proposed in recent years, however most of them focus on the feature extraction and classification method. Less number of method focuses on the information fusion of iris images. Fusion is believed to produce a better discrimination power in the feature space, thus we conduct an analysis to investigate which fusion level is able to produce the best result for iris recognition system. Experimental analysis using CASIA dataset shows feature level fusion produce 99% recognition accuracy. The verification analysis shows the best result is GAR = 95% at the FRR = 0.1

    Learning Visual Classifiers From Limited Labeled Images

    Get PDF
    Recognizing humans and their activities from images and video is one of the key goals of computer vision. While supervised learning algorithms like Support Vector Machines and Boosting have offered robust solutions, they require large amount of labeled data for good performance. It is often difficult to acquire large labeled datasets due to the significant human effort involved in data annotation. However, it is considerably easier to collect unlabeled data due to the availability of inexpensive cameras and large public databases like Flickr and YouTube. In this dissertation, we develop efficient machine learning techniques for visual classification from small amount of labeled training data by utilizing the structure in the testing data, labeled data in a different domain and unlabeled data. This dissertation has three main parts. In the first part of the dissertation, we consider how multiple noisy samples available during testing can be utilized to perform accurate visual classification. Such multiple samples are easily available in video-based recognition problem, which is commonly encountered in visual surveillance. Specifically, we study the problem of unconstrained human recognition from iris images. We develop a Sparse Representation-based selection and recognition scheme, which learns the underlying structure of clean images. This learned structure is utilized to develop a quality measure, and a quality-based fusion scheme is proposed to combine the varying evidence. Furthermore, we extend the method to incorporate privacy, an important requirement inpractical biometric applications, without significantly affecting the recognition performance. In the second part, we analyze the problem of utilizing labeled data in a different domain to aid visual classification. We consider the problem of shifts in acquisition conditions during training and testing, which is very common in iris biometrics. In particular, we study the sensor mismatch problem, where the training samples are acquired using a sensor much older than the one used for testing. We provide one of the first solutions to this problem, a kernel learning framework to adapt iris data collected from one sensor to another. Extensive evaluations on iris data from multiple sensors demonstrate that the proposed method leads to considerable improvement in cross sensor recognition accuracy. Furthermore, since the proposed technique requires minimal changes to the iris recognition pipeline, it can easily be incorporated into existing iris recognition systems. In the last part of the dissertation, we analyze how unlabeled data available during training can assist visual classification applications. Here, we consider still image-based vision applications involving humans, where explicit motion cues are not available. A human pose often conveys not only the configuration of the body parts, but also implicit predictive information about the ensuing motion. We propose a probabilistic framework to infer this dynamic information associated with a human pose, using unlabeled and unsegmented videos available during training. The inference problem is posed as a non-parametric density estimation problem on non-Euclidean manifolds. Since direct modeling is intractable, we develop a data driven approach, estimating the density for the test sample under consideration. Statistical inference on the estimated density provides us with quantities of interest like the most probable future motion of the human and the amount of motion informatio

    Iris Recognition Approach for Preserving Privacy in Cloud Computing

    Get PDF
    Biometric identification systems involve securing biometric traits by encrypting them using an encryption algorithm and storing them in the cloud. In recent decades, iris recognition schemes have been considered one of the most effective biometric models for identifying humans based on iris texture, due to their relevance and distinctiveness. The proposed system focuses on encrypting biometric traits. The user’s iris feature vector is encrypted and stored in the cloud. During the matching process, the user’s iris feature vector is compared with the one stored in the cloud. If it meets the threshold conditions, the user is authenticated. Iris identification in cloud computing involves several steps. First, the iris image is pre-processed to remove noise using the Hough transform. Then, the pixel values are normalized, Gabor filters are applied to extract iris features. The features are then encrypted using the AES 128-bit algorithm. Finally, the features of the test image are matched with the stored features on the cloud to verify authenticity. The process ensures the privacy and security of the iris data in cloud storage by utilizing encryption and efficient image processing techniques. The matching is performed by setting an appropriate threshold for comparison. Overall, the approach offers a significant level of safety, effectiveness, and accuracy

    Iris Recognition: Robust Processing, Synthesis, Performance Evaluation and Applications

    Get PDF
    The popularity of iris biometric has grown considerably over the past few years. It has resulted in the development of a large number of new iris processing and encoding algorithms. In this dissertation, we will discuss the following aspects of the iris recognition problem: iris image acquisition, iris quality, iris segmentation, iris encoding, performance enhancement and two novel applications.;The specific claimed novelties of this dissertation include: (1) a method to generate a large scale realistic database of iris images; (2) a crosspectral iris matching method for comparison of images in color range against images in Near-Infrared (NIR) range; (3) a method to evaluate iris image and video quality; (4) a robust quality-based iris segmentation method; (5) several approaches to enhance recognition performance and security of traditional iris encoding techniques; (6) a method to increase iris capture volume for acquisition of iris on the move from a distance and (7) a method to improve performance of biometric systems due to available soft data in the form of links and connections in a relevant social network
    • …
    corecore