894 research outputs found

    Enhanced iris recognition: Algorithms for segmentation, matching and synthesis

    Get PDF
    This thesis addresses the issues of segmentation, matching, fusion and synthesis in the context of irises and makes a four-fold contribution. The first contribution of this thesis is a post matching algorithm that observes the structure of the differences in feature templates to enhance recognition accuracy. The significance of the scheme is its robustness to inaccuracies in the iris segmentation process. Experimental results on the CASIA database indicate the efficacy of the proposed technique. The second contribution of this thesis is a novel iris segmentation scheme that employs Geodesic Active Contours to extract the iris from the surrounding structures. The proposed scheme elicits the iris texture in an iterative fashion depending upon both the local and global conditions of the image. The performance of an iris recognition algorithm on both the WVU non-ideal and CASIA iris database is observed to improve upon application of the proposed segmentation algorithm. The third contribution of this thesis is the fusion of multiple instances of the same iris and multiple iris units of the eye, i.e., the left and right iris at the match score level. Using simple sum rule, it is demonstrated that both multi-instance and multi-unit fusion of iris can lead to a significant improvement in matching accuracy. The final contribution is a technique to create a large database of digital renditions of iris images that can be used to evaluate the performance of iris recognition algorithms. This scheme is implemented in two stages. In the first stage, a Markov Random Field model is used to generate a background texture representing the global iris appearance. In the next stage a variety of iris features, viz., radial and concentric furrows, collarette and crypts, are generated and embedded in the texture field. Experimental results confirm the validity of the synthetic irises generated using this technique

    Complex-valued Iris Recognition Network

    Full text link
    In this work, we design a complex-valued neural network for the task of iris recognition. Unlike the problem of general object recognition, where real-valued neural networks can be used to extract pertinent features, iris recognition depends on the extraction of both phase and amplitude information from the input iris texture in order to better represent its stochastic content. This necessitates the extraction and processing of phase information that cannot be effectively handled by a real-valued neural network. In this regard, we design a complex-valued neural network that can better capture the multi-scale, multi-resolution, and multi-orientation phase and amplitude features of the iris texture. We show a strong correspondence of the proposed complex-valued iris recognition network with Gabor wavelets that are used to generate the classical IrisCode; however, the proposed method enables automatic complex-valued feature learning that is tailored for iris recognition. Experiments conducted on three benchmark datasets - ND-CrossSensor-2013, CASIA-Iris-Thousand and UBIRIS.v2 - show the benefit of the proposed network for the task of iris recognition. Further, the generalization capability of the proposed network is demonstrated by training and testing it across different datasets. Finally, visualization schemes are used to convey the type of features being extracted by the complex-valued network in comparison to classical real-valued networks. The results of this work are likely to be applicable in other domains, where complex Gabor filters are used for texture modeling

    Iris Recognition: Robust Processing, Synthesis, Performance Evaluation and Applications

    Get PDF
    The popularity of iris biometric has grown considerably over the past few years. It has resulted in the development of a large number of new iris processing and encoding algorithms. In this dissertation, we will discuss the following aspects of the iris recognition problem: iris image acquisition, iris quality, iris segmentation, iris encoding, performance enhancement and two novel applications.;The specific claimed novelties of this dissertation include: (1) a method to generate a large scale realistic database of iris images; (2) a crosspectral iris matching method for comparison of images in color range against images in Near-Infrared (NIR) range; (3) a method to evaluate iris image and video quality; (4) a robust quality-based iris segmentation method; (5) several approaches to enhance recognition performance and security of traditional iris encoding techniques; (6) a method to increase iris capture volume for acquisition of iris on the move from a distance and (7) a method to improve performance of biometric systems due to available soft data in the form of links and connections in a relevant social network

    A Survey of Iris Recognition System

    Get PDF
    The uniqueness of iris texture makes it one of the reliable physiological biometric traits compare to the other biometric traits. In this paper, we investigate a different level of fusion approach in iris image. Although, a number of iris recognition methods has been proposed in recent years, however most of them focus on the feature extraction and classification method. Less number of method focuses on the information fusion of iris images. Fusion is believed to produce a better discrimination power in the feature space, thus we conduct an analysis to investigate which fusion level is able to produce the best result for iris recognition system. Experimental analysis using CASIA dataset shows feature level fusion produce 99% recognition accuracy. The verification analysis shows the best result is GAR = 95% at the FRR = 0.1

    Pigment Melanin: Pattern for Iris Recognition

    Full text link
    Recognition of iris based on Visible Light (VL) imaging is a difficult problem because of the light reflection from the cornea. Nonetheless, pigment melanin provides a rich feature source in VL, unavailable in Near-Infrared (NIR) imaging. This is due to biological spectroscopy of eumelanin, a chemical not stimulated in NIR. In this case, a plausible solution to observe such patterns may be provided by an adaptive procedure using a variational technique on the image histogram. To describe the patterns, a shape analysis method is used to derive feature-code for each subject. An important question is how much the melanin patterns, extracted from VL, are independent of iris texture in NIR. With this question in mind, the present investigation proposes fusion of features extracted from NIR and VL to boost the recognition performance. We have collected our own database (UTIRIS) consisting of both NIR and VL images of 158 eyes of 79 individuals. This investigation demonstrates that the proposed algorithm is highly sensitive to the patterns of cromophores and improves the iris recognition rate.Comment: To be Published on Special Issue on Biometrics, IEEE Transaction on Instruments and Measurements, Volume 59, Issue number 4, April 201
    • …
    corecore