802 research outputs found

    AN EFFECTIVE BLOCK WEIGHTAGE BASED TECHNIQUE FOR IRIS RECOGNITION USING EMPIRICAL MODE DECOMPOSITION

    Get PDF
    with the growing demands in security systems, iris recognition continues to be a significant solution for biometrics-based identification systems. There are several techniques for Iris Recognition such as Phase Based Technique, Non Filter-based Technique, Based on Wavelet Transform, Based on Empirical Mode Decomposition and many more. In this paper, we have developed a block weightage based iris recognition technique using Empirical Mode Decomposition (EMD) taking into consideration the drawbacks of the baseline technique. EMD is an adaptive multiresolution decomposition technique that is used for extracting the features from each block of the iris image. For matching the features of iris images with the test image, we make use of block weightage method that is designed in accordance with the irrelevant pixels contained in the blocks. For experimental evaluation, we have used the CASIA iris image database and the results clearly demonstrated that applying EMD in each block of normalized iris images makes it possible to achieve better accuracy in iris recognition than the baseline technique

    Empirical mode decomposition-based facial pose estimation inside video sequences

    Get PDF
    We describe a new pose-estimation algorithm via integration of the strength in both empirical mode decomposition (EMD) and mutual information. While mutual information is exploited to measure the similarity between facial images to estimate poses, EMD is exploited to decompose input facial images into a number of intrinsic mode function (IMF) components, which redistribute the effect of noise, expression changes, and illumination variations as such that, when the input facial image is described by the selected IMF components, all the negative effects can be minimized. Extensive experiments were carried out in comparisons to existing representative techniques, and the results show that the proposed algorithm achieves better pose-estimation performances with robustness to noise corruption, illumination variation, and facial expressions

    Iris recognition Using Fast Walsh Hadamard Transform Based feature Space

    Get PDF
    The significance of Iris detection and recognition in area of bioinformatics and pattern recognition has been increased from last few decades. Looking at the importance of Iris detection and recognition, we propose a robust, stable and reliable computational model. Features are extracted from iris images using two different approaches such as Hilbert transform and Fast wavelet Hadamard Transform (FWHT).Random forest is used as a classification algorithm. 5-folds cross validation test is applied to evaluate the performance of K-nearest neighbor. Among three feature spaces, FWHT feature space has achieved promising results. The success rate of K-nearest neighbor on FWHT feature space is 94.4%. After examining the results, we have observed that our model might be useful and helpful for iris detection in future work

    B-splines in EMD and Graph Theory in Pattern Recognition

    Get PDF
    With the development of science and technology, a large amount of data is waiting for further scientific exploration. We can always build up some good mathematical models based on the given data to analyze and solve the real life problems. In this work, we propose three types of mathematical models for different applications.;In chapter 1, we use Bspline based EMD to analysis nonlinear and no-stationary signal data. A new idea about the boundary extension is introduced and applied to the Empirical Mode Decomposition(EMD) algorithm. Instead of the traditional mirror extension on the boundary, we propose a ratio extension on the boundary.;In chapter 2 we propose a weighted directed multigraph for text pattern recognition. We set up a weighted directed multigraph model using the distances between the keywords as the weights of arcs. We then developed a keyword-frequency-distance-based algorithm which not only utilizes the frequency information of keywords but also their ordering information.;In chapter 3, we propose a centrality guided clustering method. Different from traditional methods which choose a center of a cluster randomly, we start clustering from a LEADER - a vertex with highest centrality score, and a new member is added into an existing community if the new vertex meet some criteria and the new community with the new vertex maintain a certain density.;In chapter 4, we define a new graph optimization problem which is called postman tour with minimum route-pair cost. And we model the DNA sequence assembly problem as the postman tour with minimum route-pair cost problem

    The machine abnormal degree detection method based on SVDD and negative selection mechanism

    Get PDF
    As is well-known, fault samples are essential for the fault diagnosis and anomaly detection, but in most cases, it is difficult to obtain them. The negative selection mechanism of immune system, which can distinguish almost all nonself cells or molecules with only the self cells, gives us an inspiration to solve the problem of anomaly detection with only the normal samples. In this paper, we introduced the Support Vector Data Description (SVDD) and negative selection mechanism to separate the state space of machines into self, non-self and fault space. To estimate the abnormal level of machines, a function that could calculate the abnormal degree was constructed and its sensitivity change according to the change of abnormal degree was also discussed. At last, Iris-Fisher and ball bearing fault data set were used to verify the effectiveness of this method
    • …
    corecore