290 research outputs found

    Speeded Up Robust Features Descriptor for Iris Recognition Systems

    Get PDF
    اكتسبت النظم البايومترية اهتماما كبيرا لعدة تطبيقات. كان تحديد القزحية أحد أكثر التقنيات البايومترية تطوراً للمصادقة الفعالة. نظام التعرف على القزحية الحالية يقدم نتائج دقيقة وموثوق بها على أساس الصور المأخوذة بالأشعة التحت الحمراء (NIR) عندما يتم التقاط الصور في مسافة ثابتة مع تعاون المستخدم. ولكن بالنسبة لصور العين الملونة التي تم الحصول عليها تحت الطول الموجي المرئي (VW) دون التعاون بين المستخدمين، فإن كفاءة التعرف على القزحية تتأثر بسبب الضوضاء مثل صور عدم وضوح العين، و تداخل الرموش ، والانسداد  بالأجفان وغيرها. يهدف هذا العمل إلى استخدام (SURF) لاسترداد خصائص القزحية في كل من صور قزحية NIR والطيف المرئي. يتم استخدام هذا النهج وتقييمه على قواعد بيانات CASIA v1and IITD v1 كصورة قزحية NIR وUBIRIS v1 كصورة ملونة. وأظهرت النتائج معدل دقة عالية (98.1 ٪) على CASIA v1, (98.2) على IITD v1 و (83٪) على UBIRIS v1 تقييمها بالمقارنة مع الأساليب الأخرى.Biometric systems have gained significant attention for several applications. Iris identification was one of the most sophisticated biometrical techniques for effective and confident authentication. Current iris identification system offers accurate and reliable results based on near- infra -red light (NIR) images when images are taken in a restricted area with fixed-distance user cooperation. However, for the color eye images obtained under visible wavelength (VW) without cooperation between the users, the efficiency of iris recognition degrades because of noise such as eye blurring images, eye lashing, occlusion and reflection. This works aims to use Speeded up robust features Descriptor (SURF) to retrieve the iris's characteristics in both NIR iris images and visible spectrum. This approach is used and evaluated on the CASIA v1and IITD v1 databases as NIR iris image and UBIRIS v1 as color image. The evaluation results showed a high accuracy rate 98.1 % on CASIA v1, 98.2 on IITD v1 and 83% on UBIRIS v1 evaluated by comparing to the other method

    Multibiometric security in wireless communication systems

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 05/08/2010.This thesis has aimed to explore an application of Multibiometrics to secured wireless communications. The medium of study for this purpose included Wi-Fi, 3G, and WiMAX, over which simulations and experimental studies were carried out to assess the performance. In specific, restriction of access to authorized users only is provided by a technique referred to hereafter as multibiometric cryptosystem. In brief, the system is built upon a complete challenge/response methodology in order to obtain a high level of security on the basis of user identification by fingerprint and further confirmation by verification of the user through text-dependent speaker recognition. First is the enrolment phase by which the database of watermarked fingerprints with memorable texts along with the voice features, based on the same texts, is created by sending them to the server through wireless channel. Later is the verification stage at which claimed users, ones who claim are genuine, are verified against the database, and it consists of five steps. Initially faced by the identification level, one is asked to first present one’s fingerprint and a memorable word, former is watermarked into latter, in order for system to authenticate the fingerprint and verify the validity of it by retrieving the challenge for accepted user. The following three steps then involve speaker recognition including the user responding to the challenge by text-dependent voice, server authenticating the response, and finally server accepting/rejecting the user. In order to implement fingerprint watermarking, i.e. incorporating the memorable word as a watermark message into the fingerprint image, an algorithm of five steps has been developed. The first three novel steps having to do with the fingerprint image enhancement (CLAHE with 'Clip Limit', standard deviation analysis and sliding neighborhood) have been followed with further two steps for embedding, and extracting the watermark into the enhanced fingerprint image utilising Discrete Wavelet Transform (DWT). In the speaker recognition stage, the limitations of this technique in wireless communication have been addressed by sending voice feature (cepstral coefficients) instead of raw sample. This scheme is to reap the advantages of reducing the transmission time and dependency of the data on communication channel, together with no loss of packet. Finally, the obtained results have verified the claims

    Identification par analyse en paquets d'ondelettes de l'iris et tests de robustesse

    Get PDF
    Cet article présente un système de reconnaissance par l'iris, fondé sur l'analyse en paquets d'ondelettes orthogonales. Une mesure d'énergie permet de choisir les paquets qui extraient l'information discriminante sur la texture de l'iris. Les tests, conduits sur une base de 149 images de très bonne qualité, provenant de 69 yeux différents, montrent une bonne robustesse aux conditions de prises de vues, notamment aux variations d'éclairement, au flou, à une déviation de l'axe optique, et à des défauts locaux dans l'image

    Gender Estimation from Fingerprints Using DWT and Entropy

    Get PDF
    Gender estimation from fingerprints have wide range of applications, especially in the field of forensics where identifying the gender of a criminal can reduce the list of suspects significantly. Although there have been quite a few research papers in the field of gender estimation from fingerprints most of those experiments used a lot of features but were only able to achieve poor classification results. That being the motivation behind the study we successfully proposed two different approaches for gender estimation from fingerprints and achieved high classification accuracy.;In this study we have developed two different approaches for gender estimation from fingerprints. The dataset used consists of 498 fingerprints of which 260 are male and 238 are female fingerprints. The first approach is based on wavelet analysis and uses features obtained from a six level discrete wavelet transform (DWT). Classification is performed using a decision stump classifier implemented in weka and was able to achieve a classification accuracy of 95.38% using the DWT approach. The second approach uses wavelet packet analysis and extracted the Shannon entropy and log-energy entropy from the coefficients of wavelet packet transform and provided a classification accuracy of 96.59% on the same dataset using decision stump classifier implemented in weka

    Unconstrained Iris Recognition

    Get PDF
    This research focuses on iris recognition, the most accurate form of biometric identification. The robustness of iris recognition comes from the unique characteristics of the human, and the permanency of the iris texture as it is stable over human life, and the environmental effects cannot easily alter its shape. In most iris recognition systems, ideal image acquisition conditions are assumed. These conditions include a near infrared (NIR) light source to reveal the clear iris texture as well as look and stare constraints and close distance from the capturing device. However, the recognition accuracy of the-state-of-the-art systems decreases significantly when these constraints are relaxed. Recent advances have proposed different methods to process iris images captured in unconstrained environments. While these methods improve the accuracy of the original iris recognition system, they still have segmentation and feature selection problems, which results in high FRR (False Rejection Rate) and FAR (False Acceptance Rate) or in recognition failure. In the first part of this thesis, a novel segmentation algorithm for detecting the limbus and pupillary boundaries of human iris images with a quality assessment process is proposed. The algorithm first searches over the HSV colour space to detect the local maxima sclera region as it is the most easily distinguishable part of the human eye. The parameters from this stage are then used for eye area detection, upper/lower eyelid isolation and for rotation angle correction. The second step is the iris image quality assessment process, as the iris images captured under unconstrained conditions have heterogeneous characteristics. In addition, the probability of getting a mis-segmented sclera portion around the outer ring of the iris is very high, especially in the presence of reflection caused by a visible wavelength light source. Therefore, quality assessment procedures are applied for the classification of images from the first step into seven different categories based on the average of their RGB colour intensity. An appropriate filter is applied based on the detected quality. In the third step, a binarization process is applied to the detected eye portion from the first step for detecting the iris outer ring based on a threshold value defined on the basis of image quality from the second step. Finally, for the pupil area segmentation, the method searches over the HSV colour space for local minima pixels, as the pupil contains the darkest pixels in the human eye. In the second part, a novel discriminating feature extraction and selection based on the Curvelet transform are introduced. Most of the state-of-the-art iris recognition systems use the textural features extracted from the iris images. While these fine tiny features are very robust when extracted from high resolution clear images captured at very close distances, they show major weaknesses when extracted from degraded images captured over long distances. The use of the Curvelet transform to extract 2D geometrical features (curves and edges) from the degraded iris images addresses the weakness of 1D texture features extracted by the classical methods based on textural analysis wavelet transform. Our experiments show significant improvements in the segmentation and recognition accuracy when compared to the-state-of-the-art results

    Human-Centric Machine Vision

    Get PDF
    Recently, the algorithms for the processing of the visual information have greatly evolved, providing efficient and effective solutions to cope with the variability and the complexity of real-world environments. These achievements yield to the development of Machine Vision systems that overcome the typical industrial applications, where the environments are controlled and the tasks are very specific, towards the use of innovative solutions to face with everyday needs of people. The Human-Centric Machine Vision can help to solve the problems raised by the needs of our society, e.g. security and safety, health care, medical imaging, and human machine interface. In such applications it is necessary to handle changing, unpredictable and complex situations, and to take care of the presence of humans

    Journal of Telecommunications and Information Technology, 2010, nr 4

    Get PDF
    kwartalni
    corecore