54,352 research outputs found

    Coaxial optical structure for iris recognition from a distance

    Get PDF
    Supporting an unconstrained user interface is an important issue in iris recognition. Various methods try to remove the constraint of the iris being placed close to the camera, including portal-based and pan-tiltzoom (PTZ)-based solutions. Generally speaking, a PTZ-based system has two cameras: one scene camera and one iris camera. The scene camera detects the eye’s location and passes this information to the iris camera. The iris camera captures a high-resolution image of the person’s iris. Existing PTZ-based systems are divided into separate types and parallel types, according to how the scene camera and iris camera combine. This paper proposes a novel PTZ-based iris recognition system, in which the iris camera and the scene camera are combined in a coaxial optical structure. The two cameras are placed together orthogonally and a cold mirror is inserted between them, such that the optical axes of the two cameras become coincident. Due to the coaxial optical structure, the proposed system does not need the optical axis displacement-related compensation required in parallel-type systems. Experimental results show that the coaxial type can acquire an iris image more quickly and accurately than a parallel type when the stand-off distance is between 1.0 and 1.5 m. C 2011 Society of Photo-Optical Instrumentation Engineers (SPIE).This work was supported by the Korea Science and Engineering Foundation (KOSEF) through the Biometrics Engineering Research Center (BERC) at Yonsei University [R112002105070020 (2010)]

    The InfraRed Imaging Spectrograph (IRIS) for TMT: latest science cases and simulations

    Full text link
    The Thirty Meter Telescope (TMT) first light instrument IRIS (Infrared Imaging Spectrograph) will complete its preliminary design phase in 2016. The IRIS instrument design includes a near-infrared (0.85 - 2.4 micron) integral field spectrograph (IFS) and imager that are able to conduct simultaneous diffraction-limited observations behind the advanced adaptive optics system NFIRAOS. The IRIS science cases have continued to be developed and new science studies have been investigated to aid in technical performance and design requirements. In this development phase, the IRIS science team has paid particular attention to the selection of filters, gratings, sensitivities of the entire system, and science cases that will benefit from the parallel mode of the IFS and imaging camera. We present new science cases for IRIS using the latest end-to-end data simulator on the following topics: Solar System bodies, the Galactic center, active galactic nuclei (AGN), and distant gravitationally-lensed galaxies. We then briefly discuss the necessity of an advanced data management system and data reduction pipeline.Comment: 15 pages, 7 figures, SPIE (2016) 9909-0

    The InfraRed Imaging Spectrograph (IRIS) for TMT: photometric precision and ghost analysis

    Get PDF
    The InfraRed Imaging Spectrograph (IRIS) is a first-light instrument for the Thirty Meter Telescope (TMT) that will be used to sample the corrected adaptive optics field by NFIRAOS with a near-infrared (0.8 - 2.4 μ\mum) imaging camera and Integral Field Spectrograph (IFS). In order to understand the science case specifications of the IRIS instrument, we use the IRIS data simulator to characterize photometric precision and accuracy of the IRIS imager. We present the results of investigation into the effects of potential ghosting in the IRIS optical design. Each source in the IRIS imager field of view results in ghost images on the detector from IRIS's wedge filters, entrance window, and Atmospheric Dispersion Corrector (ADC) prism. We incorporated each of these ghosts into the IRIS simulator by simulating an appropriate magnitude point source at a specified pixel distance, and for the case of the extended ghosts redistributing flux evenly over the area specified by IRIS's optical design. We simulate the ghosting impact on the photometric capabilities, and found that ghosts generally contribute negligible effects on the flux counts for point sources except for extreme cases where ghosts coalign with a star of Δ\Deltam>>2 fainter than the ghost source. Lastly, we explore the photometric precision and accuracy for single sources and crowded field photometry on the IRIS imager.Comment: SPIE 2018, 14 pages, 14 figures, 4 tables, Proceedings of SPIE 10702-373, Ground-based and Airborne Instrumentation for Astronomy VII, 10702A7 (16 July 2018

    Digital cartography of Io

    Get PDF
    A high resolution controlled mosaic of the hemisphere of Io centered on longitude 310 degrees is produced. Digital cartographic techniques were employed. Approximately 80 Voyager 1 clear and blue filter frames were utilized. This mosaic was merged with low-resolution color images. This dataset is compared to the geologic map of this region. Passage of the Voyager spacecraft through the Io plasma torus during acquisition of the highest resolution images exposed the vidicon detectors to ionized radiation, resulting in dark-current buildup on the vidicon. Because the vidicon is scanned from top to bottom, more charge accumulated toward the bottom of the frames, and the additive error increases from top to bottom as a ramp function. This ramp function was removed by using a model. Photometric normalizations were applied using the Minnaert function. An attempt to use Hapke's photometric function revealed that this function does not adequately describe Io's limb darkening at emission angles greater than 80 degrees. In contrast, the Minnaert function accurately describes the limb darkening up to emission angles of about 89 degrees. The improved set of discrete camera angles derived from this effort will be used in conjunction with the space telemetry pointing history file (the IPPS file), corrected on 4 or 12 second intervals to derive a revised time history for the pointing of the Infrared Interferometric Spectrometer (IRIS). For IRIS observations acquired between camera shutterings, the IPPS file can be corrected by linear interpolation, provided that the spacecraft motions were continuous. Image areas corresponding to the fields of view of IRIS spectra acquired between camera shutterings will be extracted from the mosaic to place the IRIS observations and hotspot models into geologic context

    The infrared imaging spectrograph (IRIS) for TMT: on-instrument wavefront sensors and NFIRAOS interface

    Get PDF
    The InfraRed Imaging Spectrograph (IRIS) is a first light client science instrument for the TMT observatory that operates as a client of the NFIRAOS facility multi-conjugate adaptive optics system. This paper reports on the concept study and baseline concept design of the On-Instrument WaveFront Sensors (OIWFS) and NFIRAOS interface subsystems of the IRIS science instrument, a collaborative effort by NRC-HIA, Caltech, and TMT AO and Instrument teams. This includes work on system engineering, structural and thermal design, sky coverage modeling, patrol geometry, probe optics and mechanics design, camera design, and controls design.Comment: 17 pages, 12 figures, SPIE7735-28

    The InfraRed Imaging Spectrograph (IRIS) for TMT: photometric characterization of anisoplanatic PSFs and testing of PSF-Reconstruction via AIROPA

    Get PDF
    The InfraRed Imaging Spectrograph (IRIS) is a first-light instrument for the Thirty Meter Telescope (TMT) that will be used to sample the corrected adaptive optics field by the Narrow-Field Infrared Adaptive Optics System (NFIRAOS) with a near-infrared (0.8 - 2.4 µm) imaging camera and integral field spectrograph. To better understand IRIS science specifications we use the IRIS data simulator to characterize relative photometric precision and accuracy across the IRIS imaging camera 34”x34” field of view. Because the Point Spread Function (PSF) varies due to the effects of anisoplanatism, we use the Anisoplanatic and Instrumental Reconstruction of Off-axis PSFs for AO (AIROPA) software package to conduct photometric measurements on simulated frames using PSF-fitting as the PSF varies in single-source, binary, and crowded field use cases. We report photometric performance of the imaging camera as a function of the instrumental noise properties including dark current and read noise. Using the same methods, we conduct comparisons of photometric performance with reconstructed PSFs, in order to test the veracity of the current PSF-Reconstruction algorithms for IRIS/TMT

    The InfraRed Imaging Spectrograph (IRIS) for TMT: photometric characterization of anisoplanatic PSFs and testing of PSF-Reconstruction via AIROPA

    Get PDF
    The InfraRed Imaging Spectrograph (IRIS) is a first-light instrument for the Thirty Meter Telescope (TMT) that will be used to sample the corrected adaptive optics field by the Narrow-Field Infrared Adaptive Optics System (NFIRAOS) with a near-infrared (0.8 - 2.4 µm) imaging camera and integral field spectrograph. To better understand IRIS science specifications we use the IRIS data simulator to characterize relative photometric precision and accuracy across the IRIS imaging camera 34”x34” field of view. Because the Point Spread Function (PSF) varies due to the effects of anisoplanatism, we use the Anisoplanatic and Instrumental Reconstruction of Off-axis PSFs for AO (AIROPA) software package to conduct photometric measurements on simulated frames using PSF-fitting as the PSF varies in single-source, binary, and crowded field use cases. We report photometric performance of the imaging camera as a function of the instrumental noise properties including dark current and read noise. Using the same methods, we conduct comparisons of photometric performance with reconstructed PSFs, in order to test the veracity of the current PSF-Reconstruction algorithms for IRIS/TMT

    An Optical Technique for On-Film Recording of Lens Aperture and Focus Settings

    Get PDF
    A simple optical technique for placing a record of the camera aperture and focus conditions on each photograph is described. A lens system is installed in a NASA/Hasselblad lunar surface camera so that a small image of the camera iris is formed in the corner of the photographic image field. The camera aperture and focus settings that were used in the taking of the photograph are determined from measurements of -the width and position of the data image. A Fortran IV computer program which uses the system calibration data and iterative techniques to determine the settings from the image measurements is used and described. The relatively simple system employed in this investigation was able to resolve camera aperture settings of half- stop increments in the range of f/56 to f/16. In addition to detecting the three calibrated focus settings of 5, 15, and 70 feet, the focus values of 3, 3.5 k, and 8 feet also could be distinguished. Since the camera iris opening is imaged, a measure of the inherent iris variability is obtained during normal system calibration

    Design of a Multi-Color Plenoptic Camera for Snapshot Hyperspectral Imaging

    Get PDF
    The design of a custom camera lens including: a two-lens optical system, filter array, and iris has been developed enabling a greyscale plenoptic camera to acquire full field-of-view, 2D, instantaneous hyperspectral measurements. This work focuses on the use of 7 discrete color filters and their effect on the image quality. It was determined that the placement of the filters inside the aperture plane of the camera was paramount to mitigating image artifacts. In addition, design rules were developed such that the optimal optical parameters (image distance, working distance, and focal length) can be easily determined from a few charts
    corecore