142 research outputs found

    Ionospheric gravity wave measurements with the USU dynasonde

    Get PDF
    A method for the measurement of ionospheric Gravity Wave (GW) using the USU Dynasonde is outlined. This method consists of a series of individual procedures, which includes functions for data acquisition, adaptive scaling, polarization discrimination, interpolation and extrapolation, digital filtering, windowing, spectrum analysis, GW detection, and graphics display. Concepts of system theory are applied to treat the ionosphere as a system. An adaptive ionogram scaling method was developed for automatically extracting ionogram echo traces from noisy raw sounding data. The method uses the well known Least Mean Square (LMS) algorithm to form a stochastic optimal estimate of the echo trace which is then used to control a moving window. The window tracks the echo trace, simultaneously eliminating the noise and interference. Experimental results show that the proposed method functions as designed. Case studies which extract GW from ionosonde measurements were carried out using the techniques described. Geophysically significant events were detected and the resultant processed results are illustrated graphically. This method was also developed for real time implementation in mind

    Optimization of PEDOT: PSS thin film for organic solar cell application

    Get PDF
    As a clean and renewable energy source, the development of the organics solar cells is very promising due to the inorganic solar cell inconvenient production process and material shortness. In this work, P3HT: PCBM bulk-heterojunction devices were produced by spin coating organic layers onto ITO coated glass in air, and deposited it with an Au layer as top metal electrode. Inverted devices were fabricated with and without PEDOT:PSS. Then, several attempts have been conducted to improve power conversion efficiency by optimizing different thicknesses of the interlayer between active layer and metal. Power conversion efficiency, short circuit current, open circuit voltage and fill factor were measured on all produced devices. In contrast, the devices with 50 nm thickness of PEDOT: PSS layer showed as better solar cell with 0.0394% efficiency compared to the devices without PEDOT:PSS. As a result, introduction of PEDOT:PSS layer on active layer improves hole collection at the metal / active layer interface

    Critical issues in ionospheric data quality and implications for scientific studies

    Get PDF
    Ionospheric data are valuable records of the behavior of the ionosphere, solar activity, and the entire Sun-Earth system. The data are critical for both societally important services and scientific investigations of upper atmospheric variability. This work investigates some of the difficulties and pitfalls in maintaining long-term records of geophysical measurements. This investigation focuses on the ionospheric parameters contained in the historical data sets within the National Oceanic and Atmospheric Administration National Geophysical Data Center and Space Physics Interactive Data Resource databases. These archives include data from approximately 100 ionosonde stations worldwide, beginning in the early 1940s. Our study focuses on the quality and consistency of ionosonde data accessible via the primary Space Physics Interactive Data Resource node located within the National Oceanic and Atmospheric Administration National Geophysical Data Center and the World Data Center for Solar-Terrestrial Physics located in Boulder, Colorado. We find that, although the Space Physics Interactive Data Resource archives contained an impressive amount of high-quality data, specific problems existed involving missing and noncontiguous data sets, long-term variations or changes in methodologies and analysis procedures used, and incomplete documentation. The important lessons learned from this investigation are that the data incorporated into an archive must have clear traceability back to the primary source, including scientific validation by the contributors, and that the historical records must have associated metadata that describe relevant nuances in the observations. Although this report only focuses on historical ionosonde data in National Oceanic and Atmospheric Administration databases, we feel that these findings have general applicability to environmental scientists interested in using long-term geophysical data sets for climate and global change research.Peer ReviewedPostprint (published version

    Southern high-latitude Digisonde observations of ionosphere E-region Bragg scatter during intense lacuna conditions

    No full text
    International audienceDuring summer months at solar cycle minimum, F-region lacuna and slant-Es conditions (SEC) are common features of daytime ionograms recorded around local magnetic noon at Casey, Antarctica. Digisonde measurements of drift velocity height profiles show that the occurrence of lacuna prevents the determination of F-region drift velocities and also affects E-region drift velocity measurements. Unique E-region spectral features revealed as intervals of Bragg scatter superimposed on typical background E-region reflection were observed in Digisonde Doppler spectra during intense lacuna conditions. Daytime E-region Doppler spectra recorded at carrier frequencies from 1.5 to 2.7MHz, below the E-region critical frequency foE, have two side-peaks corresponding to Bragg scatter at approximately ±1-2Hz symmetrically located on each side of a central-peak corresponding to near-zenith total reflections. Angle-of-arrival information and ray-tracing simulations show that echo returns are coming from oblique directions most likely resulting from direct backscatter from just below the total reflection height for each sounding frequency. The Bragg backscatter events are shown to manifest during polar lacuna conditions, and to affect the determination of E-region background drift velocities, and as such must be considered when using standard Doppler-sorted interferometry (DSI) techniques to estimate ionospheric drift velocities. Given the Doppler and spatial separation of the echoes determined from high-resolution Doppler measurements, we are able to estimate the Bragg scatter phase velocity independently from the bulk E-region motion. The phase velocity coincides with the ExB direction derived from in situ fluxgate magnetometer records. When ionospheric refraction is considered, the phase velocity amplitudes deduced from DSI are comparable to the ion-acoustic speed expected in the E-region. We briefly consider the plausibility that these previously unreported polar cap E-region Bragg scatter Doppler spectral signatures, observed at Casey in December 1996 during SEC/lacuna conditions may be linked to ionosphere irregularities. These irregularities may possibly be generated by primary plasma waves triggered by current-driven instabilities, that is to say, a hybrid of the "modified two-stream" and "gradient drift" instability mechanisms

    Design of a flexible and low-power ionospheric sounder

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2014Characterizing the structure of the ionosphere has practical applications for telecommunications and scientific applications for studies of the near-earth space environment. Among several methods for measuring parameters of the ionosphere is ionospheric sounding, a radar technique that determines the electron content of the ionosphere as a function of height. Various research, military, and commercial institutions operate hundreds of ground-based ionosondes throughout the globe, and new ionosondes continue to be deployed in increasingly remote and distant locations. This thesis presents the design of an ionospheric sounder that reduces the power, size, and cost compared to existing systems. Key improvements include the use of an open-source software-defined radio platform and channel-aware dynamic sounding scheduling.Chapter 1. Introduction -- 1.1. A brief historical background -- 1.2. The ionosphere -- 1.3. Instruments for studying the ionosphere -- 1.4. Thesis organization -- Chapter 2. Radio waves and the ionosphere -- 2.1. Dispersion relation of electromagnetic waves in the ionosphere -- 2.2. Power reflected from the ionosphere -- 2.3 Noise in the HF spectrum -- 2.4. Ionograms -- Chapter 3. Radar principles -- 3.1. Target detection -- 3.2. Range and doppler elocity -- 3.3. Range-doppler ambiguity -- 3.4. Resolution and precision --3.5. Multi-pulse integration -- 3.6. Pulse compression -- 3.7. Practical limits of performance -- Chapter 4. Survey of current systems -- 4.1. Coherent transmission/reception and digital systems -- 4.2. Phase-coded pulses -- 4.3. Coherent integration of multiple pulses -- 4.4. Phased antenna arrays -- 4.5. O- and X-mode discrimination -- Chapter 5. System description -- 5.1. Design approach -- 5.2. Overview of the Ettus Research USRP -- 5.3. Using the USRP as a radar -- 5.4. Waveform Generation -- 5.5. Processing the received signal -- 5.6. Scheduling -- 5.7. Completing the system -- Chapter 6. Sounding results -- 6.1. Single frequency soundings -- 6.2. Swept frequency soundings -- Chapter 7. Conclusion -- 7.1. Evaluation of performance -- 7.2. Costs -- 7.3. Future improvements -- 7.4. Deploying a terrestrial ionosonde -- 7.5. Deploying a space-borne ionosonde -- References

    Comparison between manual scaling and Autoscala automatic scaling applied to Sodankylä Geophysical Observatory ionograms

    Get PDF
    This paper presents a comparison between standard ionospheric parameters manually and automatically scaled from ionograms recorded at the high-latitude Sodankylä Geophysical Observatory (SGO, ionosonde SO166, 64.1° geomagnetic latitude), located in the vicinity of the auroral oval. The study is based on 2610 ionograms recorded during the period June–December 2013. The automatic scaling was made by means of the Autoscala software. A few typical examples are shown to outline the method, and statistics are presented regarding the differences between manually and automatically scaled values of F2, F1, E and sporadic E (Es) layer parameters. We draw the conclusions that: 1. The F2 parameters scaled by Autoscala, foF2 and M(3000)F2, are reliable. 2. F1 is identified by Autoscala in significantly fewer cases (about 50 %) than in the manual routine, but if identified the values of foF1 are reliable. 3. Autoscala frequently (30% of the cases) detects an E layer when the manual scaling process does not. When identified by both methods, the Autoscala E-layer parameters are close to those manually scaled, foE agreeing to within 0.4 MHz. 4. Es and parameters of Es identified by Autoscala are in many cases different from those of the manual scaling. Scaling of Es at auroral latitudes is often a difficult task

    A new algorithm for high-quality ionogram generation and analysis

    Get PDF
    Standard digital ionograms that are generated by fast Fourier transform or autoregressive modeling suffer from high interference levels due to other users of the HF channel which produce artifacts and distortion, hence complicating automatic processing and information extraction. In this paper, a new method is proposed to obtain high-quality ionograms of the desired layer reflections and automatically extract important information such as critical frequencies. Following the standard procedures, two sets of periodograms are obtained by using rectangular and Blackman windows. These two periodograms are filtered and fused utilizing an automatic edge-detection-based time-frequency detector. The fused ionogram provides sharp description of the layer reflections with very low sidelobe structure (ringing). The performance of this new ionogram algorithm is tested using chirp sounder data collected from an oblique midlatitude path. It is observed that the presented algorithm is highly successful in obtaining robust and sharp ionograms free of artifacts. Furthermore, a new algorithm is proposed for automated computation of dispersion and critical frequencies of the magnetoionic components detected on the ionogram. Since efficient signal-processing algorithms are utilized, the proposed method can be implemented in real time

    The ESPAS e-infrastructure

    Get PDF
    ESPAS provides an e-Infrastructure to support access to a wide range of archived observations and model derived data for the near-Earth space environment, extending from the Earth's middle atmosphere up to the outer radiation belts. To this end, ESPAS will serve as a central access hub for researchers who wish to exploit multi-instrument multipoint data for scientific discovery, model development and validation, and data assimilation, among others. Observation based and model enhanced scientific understanding of the physical state of the Earth's space environment and its evolution is critical to advancing space weather and space climate studies, two very active branches of current scientific research. ESPAS offers an interoperable data infrastructure that enables users to find, access, and exploit near-Earth space environment observations from ground-based and spaceborne instruments and data from relevant models, obtained from distributed repositories. In order to facilitate efficient user queries ESPAS allows a highly flexible workflow scheme to select and request the desired data sets. ESPAS has the strategic goal of making Europe a leading player in the efficient use and dissemination of near-Earth space environment information offered by institutions, laboratories and research teams in Europe and worldwide, that are active in collecting, processing and distributing scientific data. Therefore, ESPAS is committed to support and foster new data providers who wish to promote the easy use of their data and models by the research community via a central access framework. ESPAS is open to all potential users interested in near-Earth space environment data, including those who are active in basic scientific research, technical or operational development and commercial applications
    • …
    corecore