595 research outputs found

    Ioonsete elektroaktiivsete tÀiturite elektromehaaniline modelleerimine ja juhtimine

    Get PDF
    VĂ€itekirja elektrooniline versioon ei sisalda publikatsiooneIoonsed elektroaktiivsed polĂŒmeerid e. tehislihased on polĂŒmeermaterjalid, mille oluline iseĂ€rasus on vĂ”ime muuta elektrienergiat mehhaaniliseks energiaks. Elektroaktiivsetest polĂŒmeeridest valmistatud pehmetel tĂ€ituritel on mitmed huvipakkuvad omadused, nĂ€iteks suur deformatsioon madala rakendatud pinge korral, mĂ€rkimisvÀÀrne tekitatud jĂ”u ja massi suhe ning vĂ”ime töötada nii vesikeskkonnas kui Ă”hus. Niisuguste tĂ€iturite kasutamine on paljutĂ”otav eriti just miniatuursetes elusloodusest inspireeritud robootikarakendustes. NĂ€iteks vĂ”ib tuua aktiivsed mikro-manipulatsioonisĂŒsteemid vĂ”i isepainduvad pehmed kateetrid, mis on iseĂ€ranis nĂ”utud meditsiini-tehnoloogias. KĂ€esoleva vĂ€itekirja uurimissfÀÀriks on sellistest materjalidest valmistatud tĂ€iturmehhanismide modelleerimine, valmistamine ja juhtimine, pÀÀdides sisuliselt ĂŒhes tĂŒkis valmistatud mitme vabadusastmega paralleelmanipulaatorite vĂ€ljatöötamisega. Kasutades kompleksset fĂŒĂŒsikalistel, elektrokeemilistel ning mehaanilistel alusteadmistel pĂ”hinevat mudelit kirjeldatakse ja ennustatakse sellist tĂŒĂŒpi tĂ€iturmehhanismide elektrilise sisendi ja mehhaanilise vĂ€ljundi vahelisi seoseid. Mudel kirjeldab ioonide transpordi dĂŒnaamikat elektrivĂ€ljas, kombineerides Nernst-Plancki ja Poissoni vĂ”rrandeid. Mitmekihilise polĂŒmeermaterjali mehhaaniline kĂ€itumine on seotud laengu- ja massitasakaalu poolt pĂ”hjustatud eri kihtide erineva ruumilise paisumisega ja kahanemisega. KĂ”ike seda kokku vĂ”ttes ning rakendades numbrilist modelleerimist lĂ”plike elementide meetodil saadakse kvantitatiivsed tulemused, mis suudavad prognoosida tĂ€iturmehhanismi kĂ€itumist ja vĂ”imaldavad projekteerida, simuleerida ja optimeerida ka neil tĂ€ituritel pĂ”hinevaid keerulisemaid mehhanisme. Koostatud mudeli valideerimiseks modelleeriti ja valmistati kaks tööpĂ”himĂ”tteliselt sarnast, kuid erinevatel elektroaktiivsetel polĂŒmeermaterjalidel pĂ”hinevat ning eri metoodikatel valmistatud mitmest tĂ€iturist koosnevat mitme vabadusastmega mikromanipulaatorit. VĂ€itekirjas demonstreeritakse, et koostatud mudel on suure tĂ€psusega vĂ”imeline ennustama nii iga individuaalse tĂ€ituri kui ka mĂ”lema manipulaatori kĂ€itumist. Demonstreerimaks piisksadestusprintimismeetodil valmistatud manipulaatori efektiivsust, kirjeldatakse kahte erinevat kontrollrakendust. Esmalt nĂ€idatakse tagasisidestamata kontrollitavat seadet, kus pööratakse nelja tĂ€ituri abil peeglit, suunates laserikiirt X-Y tasapinnas ettemÀÀratud punktidele. Teiseks nĂ€idisrakenduseks on tagasisidestatud kontrollmetoodikaga juhitav mikroskoobi preparaadiliigutaja, mille abil saab preparaati nii tĂ”sta-langetada kui ka pöörata. Manipulaatorite valmistamise kĂ€igus leiti, et piisksadestusprintimise meetodi tĂ€psus, jĂ”udlus ja skaleeritavus vĂ”imaldavad suure tootlikkusega valmistada identseid keerulisi mitmeosalisi manipulaatoreid. See tulemus nĂ€itab ilmekalt uue tehnoloogia eeliseid traditsiooniliste valmistamisviiside ees.Ionic electroactive polymers (IEAPs) actuators are kind of smart composite materials that have the ability to convert electrical energy into mechanical energy. The actuators fabricated using IEAP materials will benefit from attractive features such as high compliance, lightweight, large strain, low voltage, biocompatibility, high force to weight ratio, and ability to operate in an aqueous environment as well as in open air. The future of soft robotic actuation system with IEAP actuators is very promising especially in the microdomain for cutting edge applications such as micromanipulation systems, medical devices with higher dexterity, soft catheters with built-in actuation, bio-inspired robotics with better-mimicking properties and active compliant micromechanisms. This dissertation has introduced an effective modelling framework representing the complex electro-chemo-mechanical dynamics that can predict the electromechanical transduction in this kind of actuators. The model describes the ion transport dynamics under electric field by combining the Nernst-Planck and Poisson’s equation and the mechanical response is associated with the volumetric swelling caused by resulting charge and mass balance. The framework of this modelling method to predict the behavior of the actuator enabled to design, simulate and optimize compliant mechanism using IEAP actuators. As a result, a novel parallel manipulator with three degrees of freedom was modelled and fabricated with two different types of electrode materials and is characterized and compared with the simulation model. It is shown that the developed model was able to predict the behavior of the manipulator with a good agreement ensuring the high fidelity of the modelling framework. In the process of the fabrication, it is found that the manipulator fabricated through additive manufacturing method allows to fabricate multipart and intricate patterns with high throughput production capability and also opens the opportunity to print a matrix array of identical actuators over a wide size scale along with improved performance. Finally, to showcase the competence of the printed manipulator two different control application was demonstrated. At first, an open loop four-way optical switch showing the capability of optically triggering four switches in the X-Y plane in an automated sequence is shown followed by closed-loop micromanipulation of an active microscope stage using model predictive control system architecture is shown. The application of the manipulator can be extended to other potential applications such as a zoom lens, a microscope stage, laser steering, autofocusing systems, and micromirror. Overall this dissertation results in modelling, fabrication, and control of ionic electroactive polymer actuators leading to the development of a low cost, monolithic, flat, multi DOF parallel manipulator for micromanipulation application.https://www.ester.ee/record=b524351

    Evaluation of Microencapsulation of The UFV-AREG1 Bacteriophage in Alginate-Ca Microcapsules using Microfluidic Devices

    Full text link
    The indiscriminate use of antibiotics and the emergence of resistant microorganisms have become a major challenge for the food industry. The purpose of this work was to microencapsulate the bacteriophage UFV-AREG1 in a calcium alginate matrix using microfluidic devices and to study the viability and efficiency of retention. The microcapsules were added to gel of propylene glycol for use as an antimicrobial in the food industry. The technique showed the number of the phage encapsulation, yielding drops with an average 100-250 Ό\mum of diameter, 82.1 ±\pm 2% retention efficiency and stability in the gel matrix for 21 days. The gel added to the microencapsulated phage showed efficiency (not detectable on the surface) in reducing bacterial contamination on the surface at a similar level to antimicrobial chemicals (alcohol 70%). Therefore, it was possible to microencapsulate bacteriophages in alginate-Ca and apply the microcapsules in gels for use as sanitizers in the food industry.Comment: 8 pages, 5 figure

    Multidimensional Atomic Force Microscopy: A Versatile Novel Technology for Nanopharmacology Research

    Get PDF
    Nanotechnology is giving us a glimpse into a nascent field of nanopharmacology that deals with pharmacological phenomena at molecular scale. This review presents our perspective on the use of scanning probe microscopy techniques with special emphasis to multidimensional atomic force microscopy (m-AFM) to explore this new field with a particular emphasis to define targets, design therapeutics, and track outcomes of molecular-scale pharmacological interactions. The approach will be to first discuss operating principles of m-AFM and provide representative examples of studies to understand human health and disease at the molecular level and then to address different strategies in defining target macromolecules, screening potential drug candidates, developing and characterizing of drug delivery systems, and monitoring target–drug interactions. Finally, we will discuss some future directions including AFM tip-based parallel sensors integrated with other high-throughput technologies which could be a powerful platform for drug discovery

    Tindiprinditud pehmed tÀiturid

    Get PDF
    VĂ€itekirja elektrooniline versioon ei sisalda publikatsiooneTuleviku biomeditsiini- ja robootikarakenduste tĂ€iturite jaoks on vaja usaldusvÀÀrseid, korratavaid ja skaleeritavaid valmistamismeetodeid. Johannes Gutenbergi nĂ€itel vĂ”ib printimine ka tehislihaste tootmist revolutsioneerida: printimine vĂ”imaldab valmistada ĂŒhtlase paksuse ja keeruka mustriga tĂ€itureid. Selle doktoritöö raames arendati vĂ€lja prinditud kolmekihilised kahest elektroodist ja neid eraldavast membraanist koosnevad juhtivpolĂŒmeeridel pĂ”hinevad tĂ€iturid. TĂ€nu analoogsele kĂ€itumisele looduslike lihastega kutsutakse neid kuju muutvaid materjale ka tehislihasteks ning just selle funktsionaalse sarnasuse pĂ”hjal on tĂ”enĂ€olisteks rakendusvaldkondadeks robootika ja meditsiinitehnoloogia. Prinditud mikrotĂ€iturite elektrilisi, mehaanilisi ja tĂ€ituromadusi saab muuta kolme peamise strateegia abil. Esiteks modifitseeriti selles doktoritöös kommertsiaalse juhtivpolĂŒmeertindi koostist, lisades sinna sĂŒsinikaerogeeli. Saadud juhtivpolĂŒmeer-sĂŒsinik-komposiidil pĂ”hineval tĂ€ituril nĂ€itas vĂ”rreldes ainult juhtivpolĂŒmeertĂ€ituriga suuremat jĂ”udu. Teiseks varieeriti tĂ€ituromaduste tĂ€ppisreguleerimiseks elektroodi paksust, mis oli vĂ€hemalt 20 kihi ulatuses lineaarses sĂ”ltuvuses kihtide arvust. Paksuse kasvades suurenesid ka tĂ€ituri jĂ”ud, liigutusulatus, pinnajuhtivus ja mahtuvus. Kolmandaks hÀÀlestati tĂ€ituri sooritusvĂ”imet sobivate alus- ehk membraanimaterjalide valikuga. NitriilbutadieenkautĆĄukile prinditud Ă”hukesel tĂ€ituril oli lineaarses liigutusreĆŸiimis suurusjĂ€rgu vĂ”rra suurem liigutusulatus vĂ”rreldes tööstusliku polĂŒvinĂŒlideendifluoriidmembraaniga tĂ€ituriga. Selles töös nĂ€idati, et piisksadestusprintimise teel on vĂ”imalik valmistada pehmeid elektromehaanilisi sĂŒsteeme, hoolimata meetodi mĂ”ningatest piirangutest. Sobivalt valitud tindimaterjalid ja hÀÀlestatud printimisprotsess vĂ”imaldavad juba lĂ€hitulevikus valmistada pehmeid ja integreeritud elektromehaanilisi sĂŒsteeme tĂ€ielikult printimise teel.Future soft micro actuator applications for biomedical and soft robotic applications need reliable, repeatable, cost-effective and scalable production methods. As an example of Johannes Gutenberg, printing could also revolutionize the production of artificial muscles – printing allows fabrication of homogeneous actuators with intricate patterns. In this thesis technology for fabricating actuators composed of two conducting polymer-based electrodes and a membrane separating them was developed. The actuators change their shape in response to electrical stimuli. Due to this functional similarity to natural muscles, applications in the fields of medicine and robotics are possible. The properties of printed micro actuators are tunable using various strategies. First, the composition of the conducting polymer ink was modified by adding carbon aerogel to the mix. The resulting composite showed superior force compared to pure conducting-polymer actuators. Second, the electrode thickness was controlled to fine-tune the properties. Increasing the thickness also increased the force, strain and capacitance of the actuator and conductivity of the electrodes. Third, the actuator performance was tailored by the selection of various membrane materials. Printing on spin-coated membranes from nitrile butadiene rubber resulted in extremely thin trilayer actuators that had an order of magnitude higher linear strain compared to commercial polyvinylidene based actuators. This work has showed that despite the known limitations of drop-on-demand printing, it is possible to prepare soft electromechanical systems using this technology. With the selection of compatible materials, and by using various strategies to tune the functional properties of the composite towards more preferred outcome it will be possible in the nearest future to realize applications with fully printed and integrated soft electromechanically active component

    Electromechanical instability of nanobridge in ionic liquid electrolyte media: influence of electrical double layer, dispersion forces and size effect

    Get PDF
    In this paper, the electromechanical response and instability of the nanobridge immersed in ionic electrolyte media is investigated. The electrochemical force field is determined using double-layer theory and linearized Poisson–Boltzmann equation. The presence of dispersion forces, i.e., Casimir and van der Waals attractions are incorporated considering the correction due to the presence of liquid media between the interacting surfaces (three-layer model). The strain gradient elasticity is employed to model the size-dependent structural behavior of the nanobridge. To solve the nonlinear constitutive equation of the system, three approaches, e.g., the Rayleigh–Ritz method, Lumped parameter model and the numerical solution method are employed. Impacts of the dispersion forces and size effect on the instability characteristics as well as the effects of ion concentration and potential ratio are discussed. © 2015, Indian Association for the Cultivation of Science

    Listening in to the Cell

    Get PDF

    Metallic muscles and beyond:nanofoams at work

    Get PDF
    In this contribution for the Golden Jubilee issue commemorating the 50th anniversary of the Journal of Materials Science, we will discuss the challenges and opportunities of nanoporous metals and their composites as novel energy conversion materials. In particular, we will concentrate on electrical-to-mechanical energy conversion using nanoporous metal-polymer composite materials. A materials system that mimic the properties of human skeletal muscles upon an outside stimulus is coined an 'artificial muscle.' In contrast to piezoceramics, nanoporous metallic materials offer a unique combination of low operating voltages, relatively large strain amplitudes, high stiffness, and strength. Here we will discuss smart materials where large macroscopic strain amplitudes up to 10 % and strain-rates up to 10(-2) s(-1) can be achieved in nanoporous metal/polymer composite. These strain amplitudes and strain-rates are roughly 2 and 5 orders of magnitude larger than those achieved in common actuator materials, respectively. Continuing on the theme of energy-related applications, in the summary and outlook, we discuss two recent developments toward the integration of nanoporous metals into energy conversion and storage systems. We specifically focus on the exciting potential of nanoporous metals as anodes for high-performance water electrolyzers and in next-generation lithium-ion batteries

    DEVELOPMENT OF FUNCTIONAL NANOCOMPOSITE MATERIALS TOWARDS BIODEGRADABLE SOFT ROBOTICS AND FLEXIBLE ELECTRONICS

    Get PDF
    World population is continuously growing, as well as the influence we have on the ecosystem\u2019s natural equilibrium. Moreover, such growth is not homogeneous and it results in an overall increase of older people. Humanity\u2019s activity, growth and aging leads to many challenging issues to address: among them, there are the spread of suddenly and/or chronic diseases, malnutrition, resource pressure and environmental pollution. Research in the novel field of biodegradable soft robotics and electronics can help dealing with these issues. In fact, to face the aging of the population, it is necessary an improvement in rehabilitation technologies, physiological and continuous monitoring, as well as personalized care and therapy. Also in the agricultural sector, an accurate and efficient direct measure of the plants health conditions would be of help especially in the less-developed countries. But since living beings, such as humans and plants, are constituted by soft tissues that continuously change their size and shapes, today\u2019s traditional technologies, based on rigid materials, may not be able to provide an efficient interaction necessary to satisfy these needs: the mechanical mismatch is too prohibitive. Instead, soft robotic systems and devices can be designed to combine active functionalities with soft mechanical properties that can allow them to efficiently and safely interact with soft living tissues. Soft implantable biomedical devices, smart rehabilitation devices and compliant sensors for plants are all applications that can be achieved with soft technologies. The development of sophisticated autonomous soft systems needs the integration on a unique soft body or platform of many functionalities (such as mechanical actuation, energy harvesting, storage and delivery, sensing capabilities). A great research interest is recently arising on this topic, but yet not so many groups are focusing their efforts in the use of natural-derived and biodegradable raw materials. In fact, resource pressure and environmental pollution are becoming more and more critical problems. It should be completely avoided the use of in exhaustion, pollutant, toxic and non-degradable resources, such as lithium, petroleum derivatives, halogenated compounds and organic solvents. So-obtained biodegradable soft systems and devices could then be manufactured in high number and deployed in the environment to fulfil their duties without the need to recover them, since they can safely degrade in the environment. The aim of the current Ph.D. project is the use of natural-derived and biodegradable polymers and substances as building blocks for the development of smart composite materials that could operate as functional elements in a soft robotic system or device. Soft mechanical properties and electronic/ionic conductive properties are here combined together within smart nanocomposite materials. The use of supersonic cluster beam deposition (SCBD) technique enabled the fabrication of cluster-assembled Au electrodes that can partially penetrate into the surface of soft materials, providing an efficient solution to the challenge of coupling conductive metallic layers and soft deformable polymeric substrates. In this work, cellulose derivatives and poly(3-hydroxybutyrate) bioplastic are used as building blocks for the development of both underwater and in-air soft electromechanical actuators that are characterized and tested. A cellulosic matrix is blended with natural-derived ionic liquids to design and manufacture completely biodegradable supercapacitors, extremely interesting energy storage devices. Lastly, ultrathin Au electrodes are here deposited on biodegradable cellulose acetate sheets, in order to develop transparent flexible electronics as well as bidirectional resistive-type strain sensors. The results obtained in this work can be regarded as a preliminary study towards the realization of full natural-derived and biodegradable soft robotic and electronic systems and devices
    • 

    corecore