2,355 research outputs found

    Big Data and the Internet of Things

    Full text link
    Advances in sensing and computing capabilities are making it possible to embed increasing computing power in small devices. This has enabled the sensing devices not just to passively capture data at very high resolution but also to take sophisticated actions in response. Combined with advances in communication, this is resulting in an ecosystem of highly interconnected devices referred to as the Internet of Things - IoT. In conjunction, the advances in machine learning have allowed building models on this ever increasing amounts of data. Consequently, devices all the way from heavy assets such as aircraft engines to wearables such as health monitors can all now not only generate massive amounts of data but can draw back on aggregate analytics to "improve" their performance over time. Big data analytics has been identified as a key enabler for the IoT. In this chapter, we discuss various avenues of the IoT where big data analytics either is already making a significant impact or is on the cusp of doing so. We also discuss social implications and areas of concern.Comment: 33 pages. draft of upcoming book chapter in Japkowicz and Stefanowski (eds.) Big Data Analysis: New algorithms for a new society, Springer Series on Studies in Big Data, to appea

    Applications of AI, IoT, and Cloud Computing in Smart Transportation: A Review

    Get PDF
    Smart transportation systems have emerged as a promising solution for improving the efficiency, safety, and sustainability of transportation. The integration of emerging technologies such as Artificial Intelligence (AI), Internet of Things (IoT), and Cloud Computing has enabled the development of intelligent transportation systems that can optimize traffic flow, enhance driver safety, and reduce transportation costs. In this study, we conducted a systematic review of the literature to explore the applications of AI, IoT, and Cloud Computing in smart transportation systems. Our findings indicate that AI can be used for autonomous vehicles, traffic management, predictive maintenance, driver assistance, and demand forecasting. IoT can enable connected vehicles, real-time fleet management, smart parking, traffic monitoring, and remote diagnostics. Cloud Computing can facilitate vehicle-to-cloud communication, scalable infrastructure, data analytics, mobility-as-a-service, and predictive maintenance. The integration of these technologies can result in a comprehensive smart transportation system that can improve the overall efficiency of transportation systems. Our study provides insights for researchers, practitioners, and policymakers on the potential applications of AI, IoT, and Cloud Computing in smart transportation systems

    An IoT Based Predictive Connected Car Maintenance Approach

    Get PDF
    Internet of Things (IoT) is fast emerging and becoming an almost basic necessity in general life. The concepts of using technology in our daily life is not new, but with the advancements in technology, the impact of technology in daily activities of a person can be seen in almost all the aspects of life. Today, all aspects of our daily life, be it health of a person, his location, movement, etc. can be monitored and analyzed using information captured from various connected devices. This paper discusses one such use case, which can be implemented by the automobile industry, using technological advancements in the areas of IoT and Analytics. ‘Connected Car’ is a terminology, often associated with cars and other passenger vehicles, which are capable of internet connectivity and sharing of various kinds of data with backend applications. The data being shared can be about the location and speed of the car, status of various parts/lubricants of the car, and if the car needs urgent service or not. Once data are transmitted to the backend services, various workflows can be created to take necessary actions, e.g. scheduling a service with the car service provider, or if large numbers of care are in the same location, then the traffic management system can take necessary action. ’Connected cars’ can also communicate with each other, and can send alerts to each other in certain scenarios like possible crash etc. This paper talks about how the concept of ‘connected cars’ can be used to perform ‘predictive car maintenance’. It also discusses how certain technology components, i.e., Eclipse Mosquito and Eclipse Paho can be used to implement a predictive connected car use case

    Hidden Markov Models and their Application for Predicting Failure Events

    Full text link
    We show how Markov mixed membership models (MMMM) can be used to predict the degradation of assets. We model the degradation path of individual assets, to predict overall failure rates. Instead of a separate distribution for each hidden state, we use hierarchical mixtures of distributions in the exponential family. In our approach the observation distribution of the states is a finite mixture distribution of a small set of (simpler) distributions shared across all states. Using tied-mixture observation distributions offers several advantages. The mixtures act as a regularization for typically very sparse problems, and they reduce the computational effort for the learning algorithm since there are fewer distributions to be found. Using shared mixtures enables sharing of statistical strength between the Markov states and thus transfer learning. We determine for individual assets the trade-off between the risk of failure and extended operating hours by combining a MMMM with a partially observable Markov decision process (POMDP) to dynamically optimize the policy for when and how to maintain the asset.Comment: Will be published in the proceedings of ICCS 2020; @Booklet{EasyChair:3183, author = {Paul Hofmann and Zaid Tashman}, title = {Hidden Markov Models and their Application for Predicting Failure Events}, howpublished = {EasyChair Preprint no. 3183}, year = {EasyChair, 2020}

    Automated Measurement of Heavy Equipment Greenhouse Gas Emission: The case of Road/Bridge Construction and Maintenance

    Get PDF
    Road/bridge construction and maintenance projects are major contributors to greenhouse gas (GHG) emissions such as carbon dioxide (CO2), mainly due to extensive use of heavy-duty diesel construction equipment and large-scale earthworks and earthmoving operations. Heavy equipment is a costly resource and its underutilization could result in significant budget overruns. A practical way to cut emissions is to reduce the time equipment spends doing non-value-added activities and/or idling. Recent research into the monitoring of automated equipment using sensors and Internet-of-Things (IoT) frameworks have leveraged machine learning algorithms to predict the behavior of tracked entities. In this project, end-to-end deep learning models were developed that can learn to accurately classify the activities of construction equipment based on vibration patterns picked up by accelerometers attached to the equipment. Data was collected from two types of real-world construction equipment, both used extensively in road/bridge construction and maintenance projects: excavators and vibratory rollers. The validation accuracies of the developed models were tested of three different deep learning models: a baseline convolutional neural network (CNN); a hybrid convolutional and recurrent long shortterm memory neural network (LSTM); and a temporal convolutional network (TCN). Results indicated that the TCN model had the best performance, the LSTM model had the second-best performance, and the CNN model had the worst performance. The TCN model had over 83% validation accuracy in recognizing activities. Using deep learning methodologies can significantly increase emission estimation accuracy for heavy equipment and help decision-makers to reliably evaluate the environmental impact of heavy civil and infrastructure projects. Reducing the carbon footprint and fuel use of heavy equipment in road/bridge projects have direct and indirect impacts on health and the economy. Public infrastructure projects can leverage the proposed system to reduce the environmental cost of infrastructure project

    Scalable fleet monitoring and visualization for smart machine maintenance and industrial IoT applications

    Get PDF
    The wide adoption of smart machine maintenance in manufacturing is blocked by open challenges in the Industrial Internet of Things (IIoT) with regard to robustness, scalability and security. Solving these challenges is of uttermost importance to mission-critical industrial operations. Furthermore, effective application of predictive maintenance requires well-trained machine learning algorithms which on their turn require high volumes of reliable data. This paper addresses both challenges and presents the Smart Maintenance Living Lab, an open test and research platform that consists of a fleet of drivetrain systems for accelerated lifetime tests of rolling-element bearings, a scalable IoT middleware cloud platform for reliable data ingestion and persistence, and a dynamic dashboard application for fleet monitoring and visualization. Each individual component within the presented system is discussed and validated, demonstrating the feasibility of IIoT applications for smart machine maintenance. The resulting platform provides benchmark data for the improvement of machine learning algorithms, gives insights into the design, implementation and validation of a complete architecture for IIoT applications with specific requirements concerning robustness, scalability and security and therefore reduces the reticence in the industry to widely adopt these technologies

    Condition-based maintenance for major airport baggage systems

    Get PDF
    Purpose: The aim of this paper is to develop a contribution to knowledge that adds to theempirical evidence of predictive condition-based maintenance by demonstrating how theavailability and reliability of current assets can be improved without costly capital investment,resulting in overall system performance improvements.Methodology: The empirical, experimental approach, technical action research (TAR), wasdesigned to study a major Middle-Eastern airport baggage handling operation. A predictivecondition-based maintenance prototype station was installed to monitor the condition of ahighly complex system of static and moving assets.Findings. The research provides evidence that the performance frontier for airport baggagehandling systems can be improved using automated dynamic monitoring of the vibration anddigital image data on baggage trays as they pass a service station. The introduction of low-endinnovation, which combines advanced technology and low-cost hardware, reduced assetfailures in this complex, high speed operating environment.Originality/Value: The originality derives from the application of existing hardware with thecombination of Edge and Cloud computing software through architectural innovation resultingin adaptations to an existing baggage handling system within the context of a time-criticallogistics system.Keywords: IoT, Condition-based maintenance, Predictive maintenance, Edge computing, IoT,Technical Action Research, Theory of Performance Frontiers,Case Stud
    • …
    corecore