2,793 research outputs found

    Medical data processing and analysis for remote health and activities monitoring

    Get PDF
    Recent developments in sensor technology, wearable computing, Internet of Things (IoT), and wireless communication have given rise to research in ubiquitous healthcare and remote monitoring of human\u2019s health and activities. Health monitoring systems involve processing and analysis of data retrieved from smartphones, smart watches, smart bracelets, as well as various sensors and wearable devices. Such systems enable continuous monitoring of patients psychological and health conditions by sensing and transmitting measurements such as heart rate, electrocardiogram, body temperature, respiratory rate, chest sounds, or blood pressure. Pervasive healthcare, as a relevant application domain in this context, aims at revolutionizing the delivery of medical services through a medical assistive environment and facilitates the independent living of patients. In this chapter, we discuss (1) data collection, fusion, ownership and privacy issues; (2) models, technologies and solutions for medical data processing and analysis; (3) big medical data analytics for remote health monitoring; (4) research challenges and opportunities in medical data analytics; (5) examples of case studies and practical solutions

    REISCH: incorporating lightweight and reliable algorithms into healthcare applications of WSNs

    Get PDF
    Healthcare institutions require advanced technology to collect patients' data accurately and continuously. The tradition technologies still suffer from two problems: performance and security efficiency. The existing research has serious drawbacks when using public-key mechanisms such as digital signature algorithms. In this paper, we propose Reliable and Efficient Integrity Scheme for Data Collection in HWSN (REISCH) to alleviate these problems by using secure and lightweight signature algorithms. The results of the performance analysis indicate that our scheme provides high efficiency in data integration between sensors and server (saves more than 24% of alive sensors compared to traditional algorithms). Additionally, we use Automated Validation of Internet Security Protocols and Applications (AVISPA) to validate the security procedures in our scheme. Security analysis results confirm that REISCH is safe against some well-known attacks

    Fog Computing in Medical Internet-of-Things: Architecture, Implementation, and Applications

    Full text link
    In the era when the market segment of Internet of Things (IoT) tops the chart in various business reports, it is apparently envisioned that the field of medicine expects to gain a large benefit from the explosion of wearables and internet-connected sensors that surround us to acquire and communicate unprecedented data on symptoms, medication, food intake, and daily-life activities impacting one's health and wellness. However, IoT-driven healthcare would have to overcome many barriers, such as: 1) There is an increasing demand for data storage on cloud servers where the analysis of the medical big data becomes increasingly complex, 2) The data, when communicated, are vulnerable to security and privacy issues, 3) The communication of the continuously collected data is not only costly but also energy hungry, 4) Operating and maintaining the sensors directly from the cloud servers are non-trial tasks. This book chapter defined Fog Computing in the context of medical IoT. Conceptually, Fog Computing is a service-oriented intermediate layer in IoT, providing the interfaces between the sensors and cloud servers for facilitating connectivity, data transfer, and queryable local database. The centerpiece of Fog computing is a low-power, intelligent, wireless, embedded computing node that carries out signal conditioning and data analytics on raw data collected from wearables or other medical sensors and offers efficient means to serve telehealth interventions. We implemented and tested an fog computing system using the Intel Edison and Raspberry Pi that allows acquisition, computing, storage and communication of the various medical data such as pathological speech data of individuals with speech disorders, Phonocardiogram (PCG) signal for heart rate estimation, and Electrocardiogram (ECG)-based Q, R, S detection.Comment: 29 pages, 30 figures, 5 tables. Keywords: Big Data, Body Area Network, Body Sensor Network, Edge Computing, Fog Computing, Medical Cyberphysical Systems, Medical Internet-of-Things, Telecare, Tele-treatment, Wearable Devices, Chapter in Handbook of Large-Scale Distributed Computing in Smart Healthcare (2017), Springe

    Neuroadaptive incentivization in healthcare using Blockchain and IoT

    Get PDF
    Financially incentivizing health-related behaviors can improve health record outcomes and reduce healthcare costs. Blockchain and IoT technologies can be used to develop safe and transparent incentive schemes in healthcare. IoT devices, such as body sensor networks and wearable sensors, etc. connect the physical and digital world making it easier to collect useful health-related data for further analysis. There are, however, many security and privacy issues with the use of IoT. Some of these IoT security issues can be alleviated using Blockchain technology. Incorporating neuroadaptive technology can result in more personalized and effective therapies using machine learning algorithms and real-time feedback. The research investigates the possibilities of neuroadaptive incentivization in healthcare using Blockchain and IoT on patient health records. The core idea is to incentivize patients to keep their health parameters within standard range thereby reducing the load on healthcare system. In summary, we have presented a proof of concept for neuroadaptive incentivization in healthcare using Blockchain and IoT and discuss various applications and implementation challenges

    Statistical Review of Health Monitoring Models for Real-Time Hospital Scenarios

    Get PDF
    Health Monitoring System Models (HMSMs) need speed, efficiency, and security to work. Cascading components ensure data collection, storage, communication, retrieval, and privacy in these models. Researchers propose many methods to design such models, varying in scalability, multidomain efficiency, flexibility, usage and deployment, computational complexity, cost of deployment, security level, feature usability, and other performance metrics. Thus, HMSM designers struggle to find the best models for their application-specific deployments. They must test and validate different models, which increases design time and cost, affecting deployment feasibility. This article discusses secure HMSMs' application-specific advantages, feature-specific limitations, context-specific nuances, and deployment-specific future research scopes to reduce model selection ambiguity. The models based on the Internet of Things (IoT), Machine Learning Models (MLMs), Blockchain Models, Hashing Methods, Encryption Methods, Distributed Computing Configurations, and Bioinspired Models have better Quality of Service (QoS) and security than their counterparts. Researchers can find application-specific models. This article compares the above models in deployment cost, attack mitigation performance, scalability, computational complexity, and monitoring applicability. This comparative analysis helps readers choose HMSMs for context-specific application deployments. This article also devises performance measuring metrics called Health Monitoring Model Metrics (HM3) to compare the performance of various models based on accuracy, precision, delay, scalability, computational complexity, energy consumption, and security

    Pragmatic Evaluation of Health Monitoring & Analysis Models from an Empirical Perspective

    Get PDF
    Implementing and deploying several linked modules that can conduct real-time analysis and recommendation of patient datasets is necessary for designing health monitoring and analysis models. These databases include, but are not limited to, blood test results, computer tomography (CT) scans, MRI scans, PET scans, and other imaging tests. A combination of signal processing and image processing methods are used to process them. These methods include data collection, pre-processing, feature extraction and selection, classification, and context-specific post-processing. Researchers have put forward a variety of machine learning (ML) and deep learning (DL) techniques to carry out these tasks, which help with the high-accuracy categorization of these datasets. However, the internal operational features and the quantitative and qualitative performance indicators of each of these models differ. These models also demonstrate various functional subtleties, contextual benefits, application-specific constraints, and deployment-specific future research directions. It is difficult for researchers to pinpoint models that perform well for their application-specific use cases because of the vast range of performance. In order to reduce this uncertainty, this paper discusses a review of several Health Monitoring & Analysis Models in terms of their internal operational features & performance measurements. Readers will be able to recognise models that are appropriate for their application-specific use cases based on this discussion. When compared to other models, it was shown that Convolutional Neural Networks (CNNs), Masked Region CNN (MRCNN), Recurrent NN (RNN), Q-Learning, and Reinforcement learning models had greater analytical performance. They are hence suitable for clinical use cases. These models' worse scaling performance is a result of their increased complexity and higher implementation costs. This paper compares evaluated models in terms of accuracy, computational latency, deployment complexity, scalability, and deployment cost metrics to analyse such scenarios. This comparison will help users choose the best models for their performance-specific use cases. In this article, a new Health Monitoring Metric (HMM), which integrates many performance indicators to identify the best-performing models under various real-time patient settings, is reviewed to make the process of model selection even easier for real-time scenarios

    Technical Viewpoint of Challenges, Opportunities, and Future Directions of Policy Change and Information-Flow in Digital Healthcare Systems

    Get PDF
    Source: https://www.thinkmind.org/.Digital healthcare systems often run on heterogeneous devices in a distributed multi-cluster environment, and maintain their healthcare policies for managing data, securing information flow, and controlling interactions among systems components. As healthcare systems become more digitally distributed, lack of integration and safe interpretation between heterogeneous systems clusters become problematic and might lead to healthcare policy violations. Communication overhead and high computation consumption might impact the system at different levels and affect the flow of information among system clusters. This paper provides a technical viewpoint of the challenges, opportunities, and future work in digital healthcare systems, focusing on the mechanisms of monitoring, detecting, and recovering healthcare policy change/update and its imprint on information flow

    Smart vest for respiratory rate monitoring of COPD patients based on non-contact capacitive sensing

    Get PDF
    In this paper, a first approach to the design of a portable device for non-contact monitoring of respiratory rate by capacitive sensing is presented. The sensing system is integrated into a smart vest for an untethered, low-cost and comfortable breathing monitoring of Chronic Obstructive Pulmonary Disease (COPD) patients during the rest period between respiratory rehabilitation exercises at home. To provide an extensible solution to the remote monitoring using this sensor and other devices, the design and preliminary development of an e-Health platform based on the Internet of Medical Things (IoMT) paradigm is also presented. In order to validate the proposed solution, two quasi-experimental studies have been developed, comparing the estimations with respect to the golden standard. In a first study with healthy subjects, the mean value of the respiratory rate error, the standard deviation of the error and the correlation coefficient were 0.01 breaths per minute (bpm), 0.97 bpm and 0.995 (p < 0.00001), respectively. In a second study with COPD patients, the values were -0.14 bpm, 0.28 bpm and 0.9988 (p < 0.0000001), respectively. The results for the rest period show the technical and functional feasibility of the prototype and serve as a preliminary validation of the device for respiratory rate monitoring of patients with COPD.Ministerio de Ciencia e Innovación PI15/00306Ministerio de Ciencia e Innovación DTS15/00195Junta de Andalucía PI-0010-2013Junta de Andalucía PI-0041-2014Junta de Andalucía PIN-0394-201
    • …
    corecore