369 research outputs found

    Emotions detection on an ambient intelligent system using wearable devices

    Get PDF
    This paper presents the Emotional Smart Wristband and its integration with the iGenda. The aim is to detect emotional states of a group of entities through the wristband and send the social emotion value to the iGenda so it may change the home environment and notify the caregivers. This project is advantageous to communities of elderly people, like retirement homes, where a harmonious environment is imperative and where the number of inhabitants keeps increasing. The iGenda provides the visual interface and the information center, receiving the information from the Emotional Smart Wristband and tries achieve a specific emotion (such as calm or excitement). Thus, the goal is to provide an affective system that directly interacts with humans by discreetly improving their lifestyle. In this paper, it is described the wristband in depth and the data models, and is provided an evaluation of them performed by real individuals and the validation of this evaluation.- This work is supported by COMPETE, Portugal: POCI-01-0145-FEDER-007043 and FCT - Fundacao para a Ciencia e Tecnologi, Portugal a within the projects UID/CEC/00319/2013 and Post-Doc scholarship SFRH/BPD/102696/2014 (Angelo Costa) This work is partially supported by the MINECO/FEDER, Spain TIN2015-65515-C4-1-R and AP2013-01276 awarded to Jaime-Andres Rincon

    Design And Implementation Of An Autonomous Wireless Sensor-Based Smart Home

    Get PDF
    The Smart home has gained widespread attentions due to its flexible integration into everyday life. This next generation of green home system transparently unifies various home appliances, smart sensors and wireless communication technologies. It can integrate diversified physical sensed information and control various consumer home devices, with the support of active sensor networks having both sensor and actuator components. Although smart homes are gaining popularity due to their energy saving and better living benefits, there is no standardized design for smart homes. In this thesis, a smart home design is put forward that can classify and predict the state of the home utilizing historical data of the home. A wireless sensor network was setup in a home to gather and send data to a sink node. The collected data was utilized to train and test a classification model achieving high accuracy with Support Vector Machine (SVM). SVM was further utilized as a predictor of future home states. Based on the data collection, classification and prediction models, a system was designed that can learn, run with minimal human supervision and detect anomalies in a home. The aforementioned attributes make the system an asset for senior care scenarios

    SHELDON Smart habitat for the elderly.

    Get PDF
    An insightful document concerning active and assisted living under different perspectives: Furniture and habitat, ICT solutions and Healthcare

    Accessibility of Health Data Representations for Older Adults: Challenges and Opportunities for Design

    Get PDF
    Health data of consumer off-the-shelf wearable devices is often conveyed to users through visual data representations and analyses. However, this is not always accessible to people with disabilities or older people due to low vision, cognitive impairments or literacy issues. Due to trade-offs between aesthetics predominance or information overload, real-time user feedback may not be conveyed easily from sensor devices through visual cues like graphs and texts. These difficulties may hinder critical data understanding. Additional auditory and tactile feedback can also provide immediate and accessible cues from these wearable devices, but it is necessary to understand existing data representation limitations initially. To avoid higher cognitive and visual overload, auditory and haptic cues can be designed to complement, replace or reinforce visual cues. In this paper, we outline the challenges in existing data representation and the necessary evidence to enhance the accessibility of health information from personal sensing devices used to monitor health parameters such as blood pressure, sleep, activity, heart rate and more. By creating innovative and inclusive user feedback, users will likely want to engage and interact with new devices and their own data

    Artificial intelligence technologies and compassion in healthcare: A systematic scoping review

    Get PDF
    BackgroundAdvances in artificial intelligence (AI) technologies, together with the availability of big data in society, creates uncertainties about how these developments will affect healthcare systems worldwide. Compassion is essential for high-quality healthcare and research shows how prosocial caring behaviors benefit human health and societies. However, the possible association between AI technologies and compassion is under conceptualized and underexplored.ObjectivesThe aim of this scoping review is to provide a comprehensive depth and a balanced perspective of the emerging topic of AI technologies and compassion, to inform future research and practice. The review questions were: How is compassion discussed in relation to AI technologies in healthcare? How are AI technologies being used to enhance compassion in healthcare? What are the gaps in current knowledge and unexplored potential? What are the key areas where AI technologies could support compassion in healthcare?Materials and methodsA systematic scoping review following five steps of Joanna Briggs Institute methodology. Presentation of the scoping review conforms with PRISMA-ScR (Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews). Eligibility criteria were defined according to 3 concept constructs (AI technologies, compassion, healthcare) developed from the literature and informed by medical subject headings (MeSH) and key words for the electronic searches. Sources of evidence were Web of Science and PubMed databases, articles published in English language 2011–2022. Articles were screened by title/abstract using inclusion/exclusion criteria. Data extracted (author, date of publication, type of article, aim/context of healthcare, key relevant findings, country) was charted using data tables. Thematic analysis used an inductive-deductive approach to generate code categories from the review questions and the data. A multidisciplinary team assessed themes for resonance and relevance to research and practice.ResultsSearches identified 3,124 articles. A total of 197 were included after screening. The number of articles has increased over 10 years (2011, n = 1 to 2021, n = 47 and from Jan–Aug 2022 n = 35 articles). Overarching themes related to the review questions were: (1) Developments and debates (7 themes) Concerns about AI ethics, healthcare jobs, and loss of empathy; Human-centered design of AI technologies for healthcare; Optimistic speculation AI technologies will address care gaps; Interrogation of what it means to be human and to care; Recognition of future potential for patient monitoring, virtual proximity, and access to healthcare; Calls for curricula development and healthcare professional education; Implementation of AI applications to enhance health and wellbeing of the healthcare workforce. (2) How AI technologies enhance compassion (10 themes) Empathetic awareness; Empathetic response and relational behavior; Communication skills; Health coaching; Therapeutic interventions; Moral development learning; Clinical knowledge and clinical assessment; Healthcare quality assessment; Therapeutic bond and therapeutic alliance; Providing health information and advice. (3) Gaps in knowledge (4 themes) Educational effectiveness of AI-assisted learning; Patient diversity and AI technologies; Implementation of AI technologies in education and practice settings; Safety and clinical effectiveness of AI technologies. (4) Key areas for development (3 themes) Enriching education, learning and clinical practice; Extending healing spaces; Enhancing healing relationships.ConclusionThere is an association between AI technologies and compassion in healthcare and interest in this association has grown internationally over the last decade. In a range of healthcare contexts, AI technologies are being used to enhance empathetic awareness; empathetic response and relational behavior; communication skills; health coaching; therapeutic interventions; moral development learning; clinical knowledge and clinical assessment; healthcare quality assessment; therapeutic bond and therapeutic alliance; and to provide health information and advice. The findings inform a reconceptualization of compassion as a human-AI system of intelligent caring comprising six elements: (1) Awareness of suffering (e.g., pain, distress, risk, disadvantage); (2) Understanding the suffering (significance, context, rights, responsibilities etc.); (3) Connecting with the suffering (e.g., verbal, physical, signs and symbols); (4) Making a judgment about the suffering (the need to act); (5) Responding with an intention to alleviate the suffering; (6) Attention to the effect and outcomes of the response. These elements can operate at an individual (human or machine) and collective systems level (healthcare organizations or systems) as a cyclical system to alleviate different types of suffering. New and novel approaches to human-AI intelligent caring could enrich education, learning, and clinical practice; extend healing spaces; and enhance healing relationships.ImplicationsIn a complex adaptive system such as healthcare, human-AI intelligent caring will need to be implemented, not as an ideology, but through strategic choices, incentives, regulation, professional education, and training, as well as through joined up thinking about human-AI intelligent caring. Research funders can encourage research and development into the topic of AI technologies and compassion as a system of human-AI intelligent caring. Educators, technologists, and health professionals can inform themselves about the system of human-AI intelligent caring
    • …
    corecore