1,170 research outputs found

    IoT Sentinel: Automated Device-Type Identification for Security Enforcement in IoT

    Full text link
    With the rapid growth of the Internet-of-Things (IoT), concerns about the security of IoT devices have become prominent. Several vendors are producing IP-connected devices for home and small office networks that often suffer from flawed security designs and implementations. They also tend to lack mechanisms for firmware updates or patches that can help eliminate security vulnerabilities. Securing networks where the presence of such vulnerable devices is given, requires a brownfield approach: applying necessary protection measures within the network so that potentially vulnerable devices can coexist without endangering the security of other devices in the same network. In this paper, we present IOT SENTINEL, a system capable of automatically identifying the types of devices being connected to an IoT network and enabling enforcement of rules for constraining the communications of vulnerable devices so as to minimize damage resulting from their compromise. We show that IOT SENTINEL is effective in identifying device types and has minimal performance overhead

    Your Smart Home Can't Keep a Secret: Towards Automated Fingerprinting of IoT Traffic with Neural Networks

    Get PDF
    The IoT (Internet of Things) technology has been widely adopted in recent years and has profoundly changed the people's daily lives. However, in the meantime, such a fast-growing technology has also introduced new privacy issues, which need to be better understood and measured. In this work, we look into how private information can be leaked from network traffic generated in the smart home network. Although researchers have proposed techniques to infer IoT device types or user behaviors under clean experiment setup, the effectiveness of such approaches become questionable in the complex but realistic network environment, where common techniques like Network Address and Port Translation (NAPT) and Virtual Private Network (VPN) are enabled. Traffic analysis using traditional methods (e.g., through classical machine-learning models) is much less effective under those settings, as the features picked manually are not distinctive any more. In this work, we propose a traffic analysis framework based on sequence-learning techniques like LSTM and leveraged the temporal relations between packets for the attack of device identification. We evaluated it under different environment settings (e.g., pure-IoT and noisy environment with multiple non-IoT devices). The results showed our framework was able to differentiate device types with a high accuracy. This result suggests IoT network communications pose prominent challenges to users' privacy, even when they are protected by encryption and morphed by the network gateway. As such, new privacy protection methods on IoT traffic need to be developed towards mitigating this new issue

    FL4IoT: IoT Device Fingerprinting and Identification Using Federated Learning

    Get PDF
    Unidentified devices in a network can result in devastating consequences. It is, therefore, necessary to fingerprint and identify IoT devices connected to private or critical networks. With the proliferation of massive but heterogeneous IoT devices, it is getting challenging to detect vulnerable devices connected to networks. Current machine learning-based techniques for fingerprinting and identifying devices necessitate a significant amount of data gathered from IoT networks that must be transmitted to a central cloud. Nevertheless, private IoT data cannot be shared with the central cloud in numerous sensitive scenarios. Federated learning (FL) has been regarded as a promising paradigm for decentralized learning and has been applied in many different use cases. It enables machine learning models to be trained in a privacy-preserving way. In this article, we propose a privacy-preserved IoT device fingerprinting and identification mechanisms using FL; we call it FL4IoT. FL4IoT is a two-phased system combining unsupervised-learning-based device fingerprinting and supervised-learning-based device identification. FL4IoT shows its practicality in different performance metrics in a federated and centralized setup. For instance, in the best cases, empirical results show that FL4IoT achieves ∼99% accuracy and F1-Score in identifying IoT devices using a federated setup without exposing any private data to a centralized cloud entity. In addition, FL4IoT can detect spoofed devices with over 99% accuracy

    The Dark Side(-Channel) of Mobile Devices: A Survey on Network Traffic Analysis

    Full text link
    In recent years, mobile devices (e.g., smartphones and tablets) have met an increasing commercial success and have become a fundamental element of the everyday life for billions of people all around the world. Mobile devices are used not only for traditional communication activities (e.g., voice calls and messages) but also for more advanced tasks made possible by an enormous amount of multi-purpose applications (e.g., finance, gaming, and shopping). As a result, those devices generate a significant network traffic (a consistent part of the overall Internet traffic). For this reason, the research community has been investigating security and privacy issues that are related to the network traffic generated by mobile devices, which could be analyzed to obtain information useful for a variety of goals (ranging from device security and network optimization, to fine-grained user profiling). In this paper, we review the works that contributed to the state of the art of network traffic analysis targeting mobile devices. In particular, we present a systematic classification of the works in the literature according to three criteria: (i) the goal of the analysis; (ii) the point where the network traffic is captured; and (iii) the targeted mobile platforms. In this survey, we consider points of capturing such as Wi-Fi Access Points, software simulation, and inside real mobile devices or emulators. For the surveyed works, we review and compare analysis techniques, validation methods, and achieved results. We also discuss possible countermeasures, challenges and possible directions for future research on mobile traffic analysis and other emerging domains (e.g., Internet of Things). We believe our survey will be a reference work for researchers and practitioners in this research field.Comment: 55 page

    Graceful Degradation in IoT Security

    Get PDF
    As the consumer grade IoT devices industry advances, personal privacy is constantly eroded for the sake of convenience. Current security solutions, although available, ignore convenience by requiring the purchase of additional hardware, implementing confusing, out of scope updates for a non-technical user, or quarantining a device, rendering it useless. This paper proposes a solution that simultaneously maintains convenience and privacy, tailored for the Internet of Things. We propose a novel graceful degradation technique which targets individual device functionalities for acceptance or denial at the network level. When combined with current anomaly detection and fingerprinting methods, graceful degradation provides a personalized IoT security solution for the modern user

    On-device Security and Privacy Mechanisms for Resource-limited Devices: A Bottom-up Approach

    Get PDF
    This doctoral dissertation introduces novel mechanisms to provide on-device security and privacy for resource-limited smart devices and their applications. These mechanisms aim to cover five fundamental contributions in the emerging Cyber-Physical Systems (CPS), Internet of Things (IoT), and Industrial IoT (IIoT) fields. First, we present a host-based fingerprinting solution for device identification that is complementary to other security services like device authentication and access control. Then, we design a kernel- and user-level detection framework that aims to discover compromised resource-limited devices based on behavioral analysis. Further we apply dynamic analysis of smart devices’ applications to uncover security and privacy risks in real-time. Then, we describe a solution to enable digital forensics analysis on data extracted from interconnected resource-limited devices that form a smart environment. Finally, we offer to researchers from industry and academia a collection of benchmark solutions for the evaluation of the discussed security mechanisms on different smart domains. For each contribution, this dissertation comprises specific novel tools and techniques that can be applied either independently or combined to enable a broader security services for the CPS, IoT, and IIoT domains
    • …
    corecore