344 research outputs found

    Security Attacks and Countermeasures in Smart Homes

    Get PDF
    The Internet of Things (IoT) application is visible in all aspects of humans’ day-to-day affairs. The demand for IoT is growing at an unprecedented rate, from wearable wristwatches to autopilot cars. The smart home has also seen significant advancements to improve the quality of lifestyle. However, the security and privacy of IoT devices have become primary concerns as data is shared among intelligent devices and over the internet in a smart home network. There are several attacks - node capturing attack, sniffing attack, malware attack, boot phase attack, etc., which are conducted by adversaries to breach the security of smart homes. The security breach has a negative impact on the tenants\u27 privacy and prevents the availability of smart home services. This article presents smart homes\u27 most common security attacks and mitigation techniques

    ETEASH-An Enhanced Tiny Encryption Algorithm for Secured Smart Home

    Get PDF
    The proliferation of the "Internet of Things" (IoT) and its applications have affected every aspect of human endeavors from smart manufacturing, agriculture, healthcare, and transportation to homes. The smart home is vulnerable to malicious attacks due to memory constraint which inhibits the usage of traditional antimalware and antivirus software. This makes the application of traditional cryptography for its security impossible. This work aimed at securing Smart home devices, by developing an enhanced Tiny Encryption Algorithm (TEA). The enhancement on TEA was to get rid of its vulnerabilities of related-key attacks and weakness of predictable keys to be usable in securing smart devices through entropy shifting, stretching, and mixing technique. The Enhanced Tiny Encryption Algorithm for Smart Home devices (ETEASH) technique was benchmarked with the original TEA using the Runs test and avalanche effect. ETEASH successfully passed the Runs test with the significance level of 0.05 for the null hypothesis, and the ETEASH avalanche effect of 58.44% was achieved against 52.50% for TEA. These results showed that ETEASH is more secured in securing smart home devices than the standard TEA

    Permissão para partilha seletiva em ambientes IoT

    Get PDF
    The increasing use of smart devices for monitoring spaces has caused an increase in concerns about the privacy of users of these spaces. Given this problem, the legislation on the right to privacy has been worked to ensure that the existing laws on this subject are sufficiently comprehensive to preserve the privacy of users. In this way, research on this topic evolves in the sense of creating systems that ensure compliance with these laws, that is, increase transparency in the treatment of user data. In the context of this dissertation, a demonstrator-based strategy is presented to provide users control over their stored data during the temporary use of an intelligent environment. In addition, this strategy includes transparency guarantees, highlights the right to forgetting, provides the ability to consent and proof of that consent. A strategy for privacy control in such environments is also mentioned in this paper. This dissertation was developed within the CASSIOPEIA project where the case study focuses on the SmartBnB problem where a user rents a smart home for a limited time. This paper presents the developed system that ensures the user’s privacy and control over their data.O uso crescente de dispositivos inteligentes para monitorização de espaços tem provocado um aumento das preocupações sobre a privacidade dos utilizadores destes espaços. Face a este problema, a legislação sobre o direito à privacidade tem sido trabalhada de forma a garantir que as leis existentes sobre este tema são suficientemente abrangentes para preservar a privacidade dos utilizadores. Desta forma, a investigação neste tópico evolui no sentido de criar sistemas que garantam o cumprimento destas leis, ou seja aumentam a transparência no tratamentos dos dados dos utilizadores. No contexto desta dissertação, é apresentada uma estratégia baseado num demonstrador para fornecer um controlo ao utilizador sobre os seus dados armazenados durante a utilização temporária de um ambiente inteligente. Para além disso, esta estratégia inclui garantias de transparência, evidencia o direito ao esquecimento, fornece a capacidade de consentimento e prova desse consentimento. É também mencionada neste documento uma estratégia para um controlo de privacidade neste tipo de ambientes. Esta dissertação foi desenvolvida no âmbito do projeto CASSIOPEIA onde o caso de estudo se foca no SmartBnB problem onde um utilizador arrenda uma casa inteligente durante um tempo limitado. Este documento apresenta o sistema desenvolvido que garante a privacidade e controlo do utilizador sobre os seus próprios dados.This work is partially funded by NGI Trust, with number 3.85, Pro-ject CASSIOPEIA.Mestrado em Engenharia de Computadores e Telemátic

    Biometrics for internet‐of‐things security: A review

    Get PDF
    The large number of Internet‐of‐Things (IoT) devices that need interaction between smart devices and consumers makes security critical to an IoT environment. Biometrics offers an interesting window of opportunity to improve the usability and security of IoT and can play a significant role in securing a wide range of emerging IoT devices to address security challenges. The purpose of this review is to provide a comprehensive survey on the current biometrics research in IoT security, especially focusing on two important aspects, authentication and encryption. Regarding authentication, contemporary biometric‐based authentication systems for IoT are discussed and classified based on different biometric traits and the number of biometric traits employed in the system. As for encryption, biometric‐cryptographic systems, which integrate biometrics with cryptography and take advantage of both to provide enhanced security for IoT, are thoroughly reviewed and discussed. Moreover, challenges arising from applying biometrics to IoT and potential solutions are identified and analyzed. With an insight into the state‐of‐the‐art research in biometrics for IoT security, this review paper helps advance the study in the field and assists researchers in gaining a good understanding of forward‐looking issues and future research directions

    State of the Art in Biometric Key Binding and Key Generation Schemes

    Get PDF
    Direct storage of biometric templates in databases exposes the authentication system and legitimate users to numerous security and privacy challenges. Biometric cryptosystems or template protection schemes are used to overcome the security and privacy challenges associated with the use of biometrics as a means of authentication. This paper presents a review of previous works in biometric key binding and key generation schemes. The review focuses on key binding techniques such as biometric encryption, fuzzy commitment scheme, fuzzy vault and shielding function. Two categories of key generation schemes considered are private template and quantization schemes. The paper also discusses the modes of operations, strengths and weaknesses of various kinds of key-based template protection schemes. The goal is to provide the reader with a clear understanding of the current and emerging trends in key-based biometric cryptosystems

    Bringing Order into Things Decentralized and Scalable Ledgering for the Internet-of-Things

    Get PDF
    The Internet-of-Things (IoT) is simultaneously the largest and the fastest growing distributed system known to date. With the expectation of 50 billion of devices coming online by 2020, far surpassing the size of the human population, problems related to scale, trustability and security are anticipated. Current IoT architectures are inherently flawed as they are centralized on the cloud and explore fragile trust-based relationships over a plethora of loosely integrated devices, leading to IoT platforms being non-robust for every party involved and unable to scale properly in the near future. The need for a new architecture that addresses these concerns is urgent as the IoT is progressively more ubiquitous, pervasive and demanding regarding the integration of devices and processing of data increasingly susceptible to reliability and security issues. In this thesis, we propose a decentralized ledgering solution for the IoT, leveraging a recent concept: blockchains. Rather than replacing the cloud, our solution presents a scalable and fault-tolerant middleware for recording transactions between peers, under verifiable and decentralized trustability assumptions and authentication guarantees for IoT devices, cloud services and users. Following on the emergent trend in modern IoT architectures, we leverage smart hubs as blockchain gateways, aggregating, pre-processing and forwarding small amounts of data and transactions in proximity conditions, that will be verified and processed as transactions in the blockchain. The proposed middleware acts as a secure ledger and establishes private channels between peers, requiring transactions in the blockchain to be signed using threshold signature schemes and grouporiented verification properties. The approach improves the decentralization and robustness characteristics under Byzantine fault-tolerance settings, while preserving the blockchain distributed nature

    The Cipher, the Random and the Ransom: A Survey on Current and Future Ransomware

    Get PDF
    Although conceptually not new, ransomware recently regained attraction in the cybersecurity community: notorious attacks in fact have caused serious damage, proving their disruptive effect. This is likely just the beginning of a new era. According to a recent intelligence report by Cybersecurity Ventures, the total cost due to ransomware attacks is predicted to exceed $5 billion in 2017. How can this disruptive threat can be contained? Current anti-ransomware solutions are effective only against existing threats, and the worst is yet to come. Cyber criminals will design and deploy more sophisticated strategies, overcoming current defenses and, as it commonly happens in security, defenders and attackers will embrace a competition that will never end. In this arm race, anticipating how current ransomware will evolve may help at least being prepared for some future damage. In this paper, we describe existing techniques to mitigate ransomware and we discuss their limitations. Discussing how current ransomware could become even more disruptive and elusive is crucial to conceive more solid defense and systems that can mitigate zero-day ransomware, yielding higher security levels for information systems, including critical infrastructures such as intelligent transportation networks and health institutions

    A Survey on Smart Home Authentication: Toward Secure, Multi-Level and Interaction-based Identification

    Get PDF
    With the increased number and reduced cost of smart devices, Internet of Things (IoT) applications such as smart home (SHome) are increasingly popular. Owing to the characteristics of IoT environments such as resource constrained devices, existing authentication solutions may not be suitable to secure these environments. As a result, a number of authentication solutions specifically designed for IoT environments have been proposed. This paper provides a critical analysis of existing authentication solutions. The major contributions of the paper are as follows. First, it presents a generic model derived from an SHome use-case scenario. Secondly, based on the model, it performs a threat analysis to identify possible means of attacks. The analysis leads to the specification of a set of desirable security requirements for the design of authentication solutions for SHome. Thirdly, based on the requirements, existing authentication solutions are analysed and some ideas for achieving effective and efficient authentication in IoT environments are proposed
    corecore