5 research outputs found

    Involutive Bases Algorithm Incorporating F5 Criterion

    Full text link
    Faugere's F5 algorithm is the fastest known algorithm to compute Groebner bases. It has a signature-based and an incremental structure that allow to apply the F5 criterion for deletion of unnecessary reductions. In this paper, we present an involutive completion algorithm which outputs a minimal involutive basis. Our completion algorithm has a nonincremental structure and in addition to the involutive form of Buchberger's criteria it applies the F5 criterion whenever this criterion is applicable in the course of completion to involution. In doing so, we use the G2V form of the F5 criterion developed by Gao, Guan and Volny IV. To compare the proposed algorithm, via a set of benchmarks, with the Gerdt-Blinkov involutive algorithm (which does not apply the F5 criterion) we use implementations of both algorithms done on the same platform in Maple.Comment: 24 pages, 2 figure

    A general framework for Noetherian well ordered polynomial reductions

    Get PDF
    Polynomial reduction is one of the main tools in computational algebra with innumerable applications in many areas, both pure and applied. Since many years both the theory and an efficient design of the related algorithm have been solidly established. This paper presents a general definition of polynomial reduction structure, studies its features and highlights the aspects needed in order to grant and to efficiently test the main properties (noetherianity, confluence, ideal membership). The most significant aspect of this analysis is a negative reappraisal of the role of the notion of term order which is usually considered a central and crucial tool in the theory. In fact, as it was already established in the computer science context in relation with termination of algorithms, most of the properties can be obtained simply considering a well-founded ordering, while the classical requirement that it be preserved by multiplication is irrelevant. The last part of the paper shows how the polynomial basis concepts present in literature are interpreted in our language and their properties are consequences of the general results established in the first part of the paper.Comment: 36 pages. New title and substantial improvements to the presentation according to the comments of the reviewer
    corecore