18 research outputs found

    Involutive Categories and Monoids, with a GNS-correspondence

    Get PDF
    This paper develops the basics of the theory of involutive categories and shows that such categories provide the natural setting in which to describe involutive monoids. It is shown how categories of Eilenberg-Moore algebras of involutive monads are involutive, with conjugation for modules and vector spaces as special case. The core of the so-called Gelfand-Naimark-Segal (GNS) construction is identified as a bijective correspondence between states on involutive monoids and inner products. This correspondence exists in arbritrary involutive categories

    Category Algebras and States on Categories

    Full text link
    The purpose of this paper is to build a new bridge between category theory and a generalized probability theory known as noncommutative probability or quantum probability, which was originated as a mathematical framework for quantum theory, in terms of states as linear functional defined on category algebras. We clarify that category algebras can be considered as generalized matrix algebras and that the notions of state on category as linear functional defined on category algebra turns out to be a conceptual generalization of probability measures on sets as discrete categories. Moreover, by establishing a generalization of famous GNS (Gelfand-Naimark-Segal) construction, we obtain a representation of category algebras of †^{\dagger}-categories on certain generalized Hilbert spaces which we call semi-Hilbert modules over rigs.Comment: 16 page

    Relating Operator Spaces via Adjunctions

    Full text link
    This chapter uses categorical techniques to describe relations between various sets of operators on a Hilbert space, such as self-adjoint, positive, density, effect and projection operators. These relations, including various Hilbert-Schmidt isomorphisms of the form tr(A-), are expressed in terms of dual adjunctions, and maps between them. Of particular interest is the connection with quantum structures, via a dual adjunction between convex sets and effect modules. The approach systematically uses categories of modules, via their description as Eilenberg-Moore algebras of a monad

    Proof Orders for Decreasing Diagrams

    Get PDF
    We present and compare some well-founded proof orders for decreasing diagrams. These proof orders order a conversion above another conversion if the latter is obtained by filling any peak in the former by a (locally) decreasing diagram. Therefore each such proof order entails the decreasing diagrams technique for proving confluence. The proof orders differ with respect to monotonicity and complexity. Our results are developed in the setting of involutive monoids. We extend these results to obtain a decreasing diagrams technique for confluence modulo

    Inversion, Iteration, and the Art of Dual Wielding

    Full text link
    The humble †\dagger ("dagger") is used to denote two different operations in category theory: Taking the adjoint of a morphism (in dagger categories) and finding the least fixed point of a functional (in categories enriched in domains). While these two operations are usually considered separately from one another, the emergence of reversible notions of computation shows the need to consider how the two ought to interact. In the present paper, we wield both of these daggers at once and consider dagger categories enriched in domains. We develop a notion of a monotone dagger structure as a dagger structure that is well behaved with respect to the enrichment, and show that such a structure leads to pleasant inversion properties of the fixed points that arise as a result. Notably, such a structure guarantees the existence of fixed point adjoints, which we show are intimately related to the conjugates arising from a canonical involutive monoidal structure in the enrichment. Finally, we relate the results to applications in the design and semantics of reversible programming languages.Comment: Accepted for RC 201

    Reversible Monadic Computing

    Get PDF
    AbstractWe extend categorical semantics of monadic programming to reversible computing, by considering monoidal closed dagger categories: the dagger gives reversibility, whereas closure gives higher-order expressivity. We demonstrate that Frobenius monads model the appropriate notion of coherence between the dagger and closure by reinforcing Cayley's theorem; by proving that effectful computations (Kleisli morphisms) are reversible precisely when the monad is Frobenius; by characterizing the largest reversible subcategory of Eilenberg–Moore algebras; and by identifying the latter algebras as measurements in our leading example of quantum computing. Strong Frobenius monads are characterized internally by Frobenius monoids

    Monads on Dagger Categories

    Get PDF
    The theory of monads on categories equipped with a dagger (a contravariant identity-on-objects involutive endofunctor) works best when everything respects the dagger: the monad and adjunctions should preserve the dagger, and the monad and its algebras should satisfy the so-called Frobenius law. Then any monad resolves as an adjunction, with extremal solutions given by the categories of Kleisli and Frobenius-Eilenberg-Moore algebras, which again have a dagger. We characterize the Frobenius law as a coherence property between dagger and closure, and characterize strong such monads as being induced by Frobenius monoids.Comment: 28 page

    Dagger Categories of Tame Relations

    Get PDF
    Within the context of an involutive monoidal category the notion of a comparison relation is identified. Instances are equality on sets, inequality on posets, orthogonality on orthomodular lattices, non-empty intersection on powersets, and inner product on vector or Hilbert spaces. Associated with a collection of such (symmetric) comparison relations a dagger category is defined with "tame" relations as morphisms. Examples include familiar categories in the foundations of quantum mechanics, such as sets with partial injections, or with locally bifinite relations, or with formal distributions between them, or Hilbert spaces with bounded (continuous) linear maps. Of one particular example of such a dagger category of tame relations, involving sets and bifinite multirelations between them, the categorical structure is investigated in some detail. It turns out to involve symmetric monoidal dagger structure, with biproducts, and dagger kernels. This category may form an appropriate universe for discrete quantum computations, just like Hilbert spaces form a universe for continuous computation

    Algebraic Rieffel Induction, Formal Morita Equivalence, and Applications to Deformation Quantization

    Full text link
    In this paper we consider algebras with involution over a ring C which is given by the quadratic extension by i of an ordered ring R. We discuss the *-representation theory of such *-algebras on pre-Hilbert spaces over C and develop the notions of Rieffel induction and formal Morita equivalence for this category analogously to the situation for C^*-algebras. Throughout this paper the notion of positive functionals and positive algebra elements will be crucial for all constructions. As in the case of C^*-algebras, we show that the GNS construction of *-representations can be understood as Rieffel induction and, moreover, that formal Morita equivalence of two *-algebras, which is defined by the existence of a bimodule with certain additional structures, implies the equivalence of the categories of strongly non-degenerate *-representations of the two *-algebras. We discuss various examples like finite rank operators on pre-Hilbert spaces and matrix algebras over *-algebras. Formal Morita equivalence is shown to imply Morita equivalence in the ring-theoretic framework. Finally we apply our considerations to deformation theory and in particular to deformation quantization and discuss the classical limit and the deformation of equivalence bimodules.Comment: LaTeX2e, 51pages, minor typos corrected and Note/references adde
    corecore