371 research outputs found

    Invisible pushdown languages

    Full text link
    Context free languages allow one to express data with hierarchical structure, at the cost of losing some of the useful properties of languages recognized by finite automata on words. However, it is possible to restore some of these properties by making the structure of the tree visible, such as is done by visibly pushdown languages, or finite automata on trees. In this paper, we show that the structure given by such approaches remains invisible when it is read by a finite automaton (on word). In particular, we show that separability with a regular language is undecidable for visibly pushdown languages, just as it is undecidable for general context free languages

    New results on pushdown module checking with imperfect information

    Full text link
    Model checking of open pushdown systems (OPD) w.r.t. standard branching temporal logics (pushdown module checking or PMC) has been recently investigated in the literature, both in the context of environments with perfect and imperfect information about the system (in the last case, the environment has only a partial view of the system's control states and stack content). For standard CTL, PMC with imperfect information is known to be undecidable. If the stack content is assumed to be visible, then the problem is decidable and 2EXPTIME-complete (matching the complexity of PMC with perfect information against CTL). The decidability status of PMC with imperfect information against CTL restricted to the case where the depth of the stack content is visible is open. In this paper, we show that with this restriction, PMC with imperfect information against CTL remains undecidable. On the other hand, we individuate an interesting subclass of OPDS with visible stack content depth such that PMC with imperfect information against the existential fragment of CTL is decidable and in 2EXPTIME. Moreover, we show that the program complexity of PMC with imperfect information and visible stack content against CTL is 2EXPTIME-complete (hence, exponentially harder than the program complexity of PMC with perfect information, which is known to be EXPTIME-complete).Comment: In Proceedings GandALF 2011, arXiv:1106.081

    Separation of Test-Free Propositional Dynamic Logics over Context-Free Languages

    Full text link
    For a class L of languages let PDL[L] be an extension of Propositional Dynamic Logic which allows programs to be in a language of L rather than just to be regular. If L contains a non-regular language, PDL[L] can express non-regular properties, in contrast to pure PDL. For regular, visibly pushdown and deterministic context-free languages, the separation of the respective PDLs can be proven by automata-theoretic techniques. However, these techniques introduce non-determinism on the automata side. As non-determinism is also the difference between DCFL and CFL, these techniques seem to be inappropriate to separate PDL[DCFL] from PDL[CFL]. Nevertheless, this separation is shown but for programs without test operators.Comment: In Proceedings GandALF 2011, arXiv:1106.081

    Logic Characterization of Invisibly Structured Languages: The Case of Floyd Languages

    Get PDF
    Operator precedence grammars define a classical Boolean and deterministic context-free language family (called Floyd languages or FLs). FLs have been shown to strictly include the well-known Visibly Pushdown Languages, and enjoy the same nice closure properties. In this paper we provide a complete characterization of FLs in terms of a suitable Monadic Second-Order Logic. Traditional approaches to logic characterization of formal languages refer explicitly to the structures over which they are interpreted - e.g, trees or graphs - or to strings that are isomorphic to the structure, as in parenthesis languages. In the case of FLs, instead, the syntactic structure of input strings is “invisible” and must be reconstructed through parsing. This requires that logic formulae encode some typical context-free parsing actions, such as shift-reduce ones

    A regularity test for pushdown machines

    Get PDF
    It is possible to test a deterministic pushdown machine to determine if the language it recognizes is regular

    The LISP Machine

    Get PDF
    This work was conducted at the Artificial Intelligence Laboratory, a Massachusetts Institute of Technology research program supported in part by the Advanced Research Projects Agency of the Department of Defense and monitored by the Office of Naval Research under Contract Number N00014-70-A-0362-0003.MIT Artificial Intelligence Laborator
    corecore