551 research outputs found

    Magneto-thermoelectric effects in magnetic metallic thin-films

    Get PDF
    It was the purpose of this thesis to evaluate two-dimensional (2D) magneto-thermoelectric (MTE) phenomena in thinner regime. Mostly this work was motivated by the recent discovery of MTE properties in transition metal dichalcogenides (TMD). In general, TMD thin films have attracted much attention due to their very good electrical, optical, and electrochemical properties. However the total amount of studies of the MTE in TMD is rather small compared to the other properties, such as electric, opto-electric, and catalyst. Hence, in this thesis, we aimed to evaluate the MTE properties in TMD materials. Before we started to measure TMDs, we established a measurement platform and studied MTE properties in ferromagnetic CoFeB, and Weyl semimetal Co2MnGa.:1. Introduction a. Physical background i. Seebeck Effect ii. Anomalous Hall Effect and Anomalous Nernst Effect iii. Mott relation 2. Sample Preparation and evaluation a. Physical vapor deposition b. Mechanical Exfoliation c. Patterning Process 3. Data Evaluation 4. State of the art in Transition Metal Dichalcogenids a. Introduction b. TMD in use c. Magneto-thermoelectric properties in TMD 5. Magneto-thermoelectrical properties in CoFeB thin film a. Introduction b. Results and Discussion c. Conclusion 6. Anomalous Nernst and Anomalous Hall effect in Co2MnGa thin film a. Introduction b. Results and Discussion c. Summary 7. Anomalous Hall effect in exfoliated VS2 flake a. Introduction b. Experiment c. Results and Discussion d. Summary 8. Summary Acknowledgement and Reference

    Transition Metal Dichalcogenide Photodetectors

    Get PDF
    Two Dimensional (2D) materials has triggered to have transition metal dichalcogenides (TMDCs) emerging as a new class of materials that can control or interact with light to convert the photons to electrical signals for its attractive applications in photonics, electronics and optoelectronics. 2D materials along with gapless Graphene interact with light over the wavelength region of the different spectral regions having the short wavelength of the UV and extreme UV, Visible, near IR, mid IR and THz due to excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors. Next generation photodetectors are possible promising candidates for high sensitivity and TMDCs based photodetectors are the heart of the multitude of technologies to understand the principle of photodetection mechanisms and device performances. Phototransistors/photoconductors show wide varied detection performances with responsivities ranging from 10โˆ’7 A/W - 107 A/W on single or few layer TMDCs having response time between 10โˆ’5 s to 103 s. The semiconducting TMDCs like MoS2, MoSe2, WS2, WSe2 and ReS2 are gaining suitable applications in optoelectronic devices and the device design, mechanism and enhancing the performance of photodetectors are introduced and discussed systematically in this chapter. In spite of the growing demands on TMDC based devices the origin of the photoresponse characteristics is attractive and encouraging to understand and provide a path to the subject of investigation and guidelines for the future development of this rapidly growing field

    Beyond Graphene: Monolayer Transition Metal Dichalcogenides, A New Platform For Science

    Get PDF
    Following the isolation of graphene in 2004, scientists quickly showed that it possesses remarkable properties. However, as the scientific understanding of graphene matured, it became clear that it also has limitations: for example, graphene does not have a bandgap, making it poorly suited for use in digital logic. This motivated explorations of monolayer materials โ€œbeyond grapheneโ€, which could embody functionalities that graphene lacks. Transition metal dichalcogenides (TMDs) are leading candidates in this field. TMDs possess a wide variety of properties accessible through the choice of chalcogen atom, metal atom and atomic configuration (1H, 1T, and 1Tโ€™). Similar to graphene, monolayer TMDs may be produced on a small scale through mechanical exfoliation, but useful applications will require development of reliable methods for monolayer growth over large areas. In this thesis, I report our groupโ€™s recent progress in the chemical vapor deposition (CVD) of high quality, large area, monolayer TMDs under a 1H atomic configuration, which were integrated into high-quality biosensor arrays. These devices were incorporated in a flexible platform and were used for electronic read out of binding events of molecular targets in both vapor and liquid phases. I also report our findings on the CVD growth of monolayer TMDs in the 1Tโ€™ atomic configuration and measurements of their physical properties. 1Tโ€™ TMDs have been labeled the holy grail of materials due to theoretical predictions that they are 2D topological insulators; however they remain relatively unexplored due to the difficulty of monolayer growth and their lack of stability in air. Through careful passivation techniques, we were able to stabilize the as-grown monolayer 1Tโ€™ TMD flakes and perform the first characterizations on the structure. Lastly, in-plane 2D TMD heterostructures are promising material systems that combine the unique properties of each TMD. I discuss our results on the synthesis and study of 1H TMD heterostructures and unique 1H/1Tโ€™ TMD heterostructures. TMDs, with its many different accessible physical properties, coupled with the large variety of applications, have been classified as the leading nanomaterials in the realm โ€œbeyond grapheneโ€

    Heterojunction Hybrid Devices from Vapor Phase Grown MoS2_{2}

    Full text link
    We investigate a vertically-stacked hybrid photodiode consisting of a thin n-type molybdenum disulfide (MoS2_{2}) layer transferred onto p-type silicon. The fabrication is scalable as the MoS2_{2} is grown by a controlled and tunable vapor phase sulfurization process. The obtained large-scale p-n heterojunction diodes exhibit notable photoconductivity which can be tuned by modifying the thickness of the MoS2_{2} layer. The diodes have a broad spectral response due to direct and indirect band transitions of the nanoscale MoS2_{2}. Further, we observe a blue-shift of the spectral response into the visible range. The results are a significant step towards scalable fabrication of vertical devices from two-dimensional materials and constitute a new paradigm for materials engineering.Comment: 23 pages with 4 figures. This article has been published in Scientific Reports. (26 June 2014, doi:10.1038/srep05458

    Electronic Structure of Transition Metal Dichalcogenides and Molecular Semiconductors

    Get PDF
    Zweidimensionale (2D) รœbergangsmetalldichalcogenide (TMDCs) gehรถren zu den attraktivsten neuen Materialien fรผr optoelektronische Bauelemente der nรคchsten Generation. Um die รผberlegene Funktionalitรคt der mit TMDCs verbundenen Bauelemente zu realisieren, ist ein umfassendes Verstรคndnis ihrer elektronischen Struktur, einschlieรŸlich, aber nicht beschrรคnkt auf die Auswirkungen von Defekten auf die elektronischen Eigenschaften und die Ausrichtung der Energieniveaus (ELA) an den TMDCs-Grenzflรคchen, unerlรคsslich, aber derzeit nicht ausreichend. Um einen tieferen Einblick in die elektronischen Eigenschaften von TMDCs und den damit verbundenen Grenzflรคchen in Kombination mit molekularen Halbleitern (MSCs) zu erhalten, untersuchen wir i) die fundamentale Bandstruktur von Monolagen (ML) TMDCs und die durch Schwefelfehlstellen (SVs) induzierte Renormierung der Bandstruktur, um eine solide Grundlage fรผr ein besseres Verstรคndnis der elektronischen Eigenschaften von polykristallinen dรผnnen Filmen zu schaffen, und ii) die optoelektronischen Eigenschaften ausgewรคhlter MSC/ML-TMDCs-Grenzflรคchen. Darรผber hinaus wird iii) der Einfluss des Substrats auf die elektronischen Eigenschaften einer MSC/ML-TMDC-Grenzflรคche untersucht, um das Bauelementedesign zu steuern. Die Charakterisierung erfolgt hauptsรคchlich durch winkelaufgelรถste Photoelektronenspektroskopie (ARPES), ergรคnzt durch Photolumineszenz (PL), Raman-Spektroskopie, UV-Vis-Absorption, Rastertransmissionselektronenmikroskopie (TEM) und Rasterkraftmikroskopie (AFM). Unsere Ergebnisse tragen zu einem besseren Verstรคndnis der Auswirkungen von Defekten auf ML-TMDC und verwandte Grenzflรคchen mit MSCs bei, wobei auch die Auswirkungen der Substrate berรผcksichtigt werden, und sollten dazu beitragen, unser Verstรคndnis des elektronischen Verhaltens in TMDC-verwandten Gerรคten zu verbessern.Two-dimensional (2D) transition metal dichalcogenides (TMDCs) are amongst the most attractive emerging materials for next-generation optoelectronic devices. To realize the superior functionality of the TMDCs related devices, a comprehensive understanding of their electronic structure, including but not limited to the impact of defects on the electronic properties and energy level alignment (ELA) at TMDCs interfaces, is essential but presently not sufficient. In an attempt to get a deep insight into the electronic properties of TMDCs and the related interfaces combined with molecular semiconductors (MSCs), we investigate i) the fundamental band structure of monolayer (ML) TMDCs and band structure renormalization induced by sulfur vacancies (SVs), in order to provide a solid foundation for a better understanding the electronic properties of polycrystalline thin films and ii) the optoelectronic properties of selected MSC/ML-TMDC interface. In addition, iii) the impact of the substrate on the electronic properties of the MSC/ML-TMDC interface is investigated for guiding device design. The characterization is mainly performed by using angle-resolved photoelectron spectroscopy (ARPES), with complementary techniques including photoluminescence (PL), Raman spectroscopies, UV-vis absorption, scanning transmission electron microscopy (TEM), and atomic force microscopy (AFM) measurements. Our findings contribute to achieving a better understanding of the impact of defects on ML-TMDC and related interfaces with MSCs considering the substratesโ€™ effect and should help refine our understanding of the electronic behavior in TMDC-related devices

    ์ด์ฐจ์› ์ „์ด๊ธˆ์† ๋””์นผ์ฝ”์ œ๋‚˜์ด๋“œ ๋ฐ•๋ง‰๋ฌผ์งˆ์˜ ์„ฑ์žฅ๊ฑฐ๋™๊ณผ ๋ฏธ๋ž˜์ „์ž์†Œ์ž๋กœ์˜ ์‘์šฉ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2021. 2. ์˜ค๊ทœํ™˜.Two-dimensional (2D) transition-metal dichalcogenides (TMDs) in the form of MX2 (M: transition metals, X: chalcogens) have drawn substantive scientific interests owing to their extraordinary structural and physical properties. Particularly, platinum (Pt)-based 2D chalcogenides present various appealing aspects absent in conventional 2D TMDs, including thickness-dependent semiconducting-to-metallic transition, superior air stability, and low synthesis temperature. Such properties of electrical property transition are known for related to the structure of the 2D TMDs layers. Despite much-devoted efforts, scalable and controllable synthesis of large-area 2D Pt-based 2D chalcogenides with well-defined layer orientation has not been established, leaving its projected structureโˆ’property relationship largely unclarified. The extremely small thickness coupled with extraordinary electrical and optical properties of 2D TMDs layer put it the best candidate of emerging stretchable and foldable electronics recently. Although intrinsically large strain limits are projected in them (i.e., several times greater than silicon), integrating 2D TMDs in their pristine forms does not realize superior mechanical tolerance greatly demanded in high-end stretchable and foldable devices of unconventional form factors. The work described in this thesis focuses on understanding the synthesis of large area 2D TMDs layer, especially 2D PtSe2 and PtTe2 layers of interest for growth behavior related to their structural and electrical properties. This dissertation also covers a versatile and rational strategy to convert 2D TMDs of limited mechanical tolerance to tailored three-dimensional (3D) structures with extremely large mechanical stretchability accompanying well-preserved electrical integrity and modulated transport properties, through the transfer/integration and kirigami/serpentine patterning techniques. In the first part, we investigate the structural evolution of large-area chemical vapor transition (CVT)-grown 2D PtSe2 and PtTe2 layers of tailored morphology and clarify its influence on resulting electrical properties. Specifically, we unveil the coupled transition of structuralโˆ’electrical properties in 2D TMDs layers grown at a low temperature (i.e., 400 ยฐC). The layer orientation of 2D PtSe2 and PtTe2 grown by the CVD selenization and tellurization of seed Pt films exhibits horizontal-to-vertical transition with increasing of Pt thickness. These growth transitions of PtSe2 and PtTe2 layers are a consequence of competing thermodynamic and kinetic factors dictated by accumulating internal strain. The exclusive role of the strain on dictating 2D layer orientation has been quantitatively verified by the transmission electron microscopy (TEM) strain mapping analysis. In the second part, we report two novel strategies to delaminate and integrate wafer-scale 2D TMDs layers of well-defined components and orientations using water. First, we report a generic and reliable strategy to achieve the layer-by-layer integration of large-area 2D TMDs and their heterostructure variations onto a variety of unconventional substrates. This new 2D layer integration method employs water only without involving any other chemicals, thus renders distinguishable advantages over conventional approaches in terms of material property preservation and integration size scalability. Second, we directly grew a variety of 2D TMDs layers on water-dissoluble single-crystalline salt wafers and precisely delaminated them inside water in a chemically benign manner. This manufacturing strategy enables the automated integration of vertically aligned 2D TMDs layers as well as 2D/2D hetero layers of arbitrary stacking orders on exotic substrates insensitive to their kind and shape. The original salt wafers can be recycled for additional growths, confirming high process sustainability and scalability. The generality and versatility of this approach have been demonstrated by developing proof-of-concept all 2D devices for diverse yet unconventional applications. These studies are believed to shed a light on leveraging opportunities of 2D TMDs layers toward achieving large-area mechanically reconfigurable devices of various form factors at the industrially demanded scale. Lastly, we report a versatile and rational strategy to convert 2D TMDs of limited mechanical tolerance to tailored 3D structures with extremely large mechanical stretchability accompanying well-preserved electrical integrity and modulated transport properties. We employed a concept of strain engineering inspired by paper-cutting arts, known as kirigami patterning and serpentine patterning, and developed 2D TMDs-based stretchable electronics. The vertically aligned metallic PtTe2 and PtSe2 layers were employed for the high-performance electronic heaters and high-stretchable (over 2000% stretch) conductors using our low-temperature direct growth method on polymeric substrates. The semiconducting PtSe2 and MoS2 layer were employed for large-area stretchable field-effect transistor (FET) electronic device and NO2 gas sensor showing high-performance of sensitivity. These multifunctional 2D materials in unconventional yet tailored 3D forms are believed to offer vast opportunities for emerging electronics and optoelectronics.MX2 (M: ์ „์ด ๊ธˆ์†, X: ์นผ์ฝ”๊ฒ) ํ˜•ํƒœ๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” 2 ์ฐจ์› (2D) ์ „์ด ๊ธˆ์† ๋””์นผ์ฝ”์ œ๋‚˜์ด๋“œ (TMDs) ๋ฌผ์งˆ์€ ๋›ฐ์–ด๋‚œ ๊ตฌ์กฐ์ , ๋ฌผ๋ฆฌ์ , ๊ทธ๋ฆฌ๊ณ  ํ™”ํ•™์  ํŠน์„ฑ์œผ๋กœ ์ธํ•˜์—ฌ ์ „์ž๊ธฐ๊ธฐ์žฅ์น˜ ๋ถ„์•ผ์—์„œ ๋งŽ์€ ํฅ๋ฏธ๋ฅผ ๋ฐ›๊ณ  ์žˆ๋‹ค. ํŠนํžˆ ๋ฐฑ๊ธˆ (Pt) ๊ธฐ๋ฐ˜์˜ 2D TMDs ๋ฌผ์งˆ์€ ๋‘๊ป˜์— ๋”ฐ๋ฅธ ๋ฐ˜๋„์ฒด์—์„œ ๊ธˆ์†์œผ๋กœ์˜ ์„ฑ์งˆ ๋ณ€ํ™”, ๋†’์€ ์•ˆ์ •์„ฑ, ๊ทธ๋ฆฌ๊ณ  ๋‚ฎ์€ ํ•ฉ์„ฑ์˜จ๋„ ๋“ฑ์˜ ๊ธฐ์กด 2D TMDs ๋ฌผ์งˆ์—์„œ๋Š” ๋‚˜ํƒ€๋‚˜์ง€ ์•Š๋Š” ๋‹ค์–‘ํ•œ ์ด์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐ˜๋„์ฒด-๊ธˆ์†์˜ ์ „๊ธฐ์  ๋ฌผ์„ฑ ์ „์ด ํŠน์„ฑ์€ 2D TMDs ๋ฌผ์งˆ์˜ ์ธต์ƒ๊ตฌ์กฐ์™€ ๊ด€๋ จ์ด ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ์œผ๋‚˜, ๋งŽ์€ ์—ฐ๊ตฌ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์•„์ง๊นŒ์ง€ 2D TMDs ๋ฌผ์งˆ์˜ ๊ตฌ์กฐ์  ํŠน์„ฑ๊ณผ ์ „๊ธฐ์  ํŠน์„ฑ ์‚ฌ์‹œ์˜ ์‚ฌ์ด์˜ ๊ด€๊ณ„๊ฐ€ ๋ช…ํ™•ํ•˜๊ฒŒ ๋ฐํ˜€์ง€์ง€ ์•Š๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ ์ž‘์€ ๋‘๊ป˜๋กœ ๊ธฐ์ธ๋˜๋Š” 2D TMDs ๋ฌผ์งˆ์€ ๊ทธ๋“ค์˜ ๋›ฐ์–ด๋‚œ ์ „๊ธฐ์ , ๋ฌผ๋ฆฌ์ , ๊ด‘ํ•™์  ํŠน์„ฑ์œผ๋กœ ๋ฏธ๋ž˜์˜ ์‹ ์ถ•์„ฑ ๋ฐ ์ ‘์ด์‹ ์ „์ž ์žฅ์น˜์˜ ์šฐ์ˆ˜ํ•œ ํ›„๋ณด๋กœ ์—ฌ๊ฒจ์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋Ÿฌํ•œ ๋ฏธ๋ž˜ ์ „์ž์žฅ๋น„๋กœ์˜ ์ ์šฉ์„ ์œ„ํ•˜์—ฌ 2D TMDs ๋ฌผ์งˆ์„ ์œ ์—ฐํ•œ ๊ธฐํŒ์œผ๋กœ์˜ ๋ฐ•๋ฆฌ ๋ฐ ์ „์‚ฌํ•˜๋Š” ๊ธฐ์ˆ ์ด ์š”๊ตฌ๋˜์–ด ๊ด€๋ จ๋œ ํ™œ๋ฐœํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ 2D TMDs ๋ฌผ์งˆ์˜ ํฐ ๋ณ€ํ˜•๋ฅ ์˜ ํ•œ๊ณ„๋ฅผ ๊ฐ–๋Š” ๋›ฐ์–ด๋‚œ ๋ฌผ๋ฆฌ์  ํŠน์„ฑ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ๋ฐ•๋ฆฌ ๋ฐ ์ „์‚ฌ๋ฅผ ํ†ตํ•œ 2D TMDs ๋ฌผ์งˆ์˜ ๋†’์€ ์‹ ์ถ•์„ฑ, ์ ‘์ด์‹ ์ „์ž ์žฅ์น˜๋กœ์˜ ์‘์šฉ์„ ์œ„ํ•œ ๊ธฐ๊ณ„์  ๋‚ด๊ตฌ์„ฑ์˜ ํ™•๋ณด๋Š” ์•„์ง๊นŒ์ง€ ์ž˜ ์‹คํ˜„๋˜๊ณ  ์žˆ์ง€ ์•Š๋‹ค. ๋ณธ๊ณ ์—์„œ๋Š” ๋Œ€๋ฉด์  2D TMDs ๋ฌผ์งˆ ์ค‘ PtSe2 ์ธต์ƒ๊ตฌ์กฐ ๋ฐ PtTe2 ์ธต์ƒ๊ตฌ์กฐ์˜ ์„ฑ์žฅ๊ฑฐ๋™๊ณผ ์ด์™€ ๊ด€๋ จ๋œ ๊ตฌ์กฐ์ , ์ „๊ธฐ์  ํŠน์„ฑ์— ๋Œ€ํ•ด์„œ ์ง‘์ค‘ํ•œ๋‹ค. ๋˜ํ•œ 2D TMDs ๋ฌผ์งˆ์˜ ์ „์†ก๊ณผ ํ†ตํ•ฉ ๋ฐฉ๋ฒ•๊ณผ 3์ฐจ์› (3D) ํŒจํ„ฐ๋‹(patterning) ๊ธฐ์ˆ ์„ ์ด์šฉํ•œ ๋ฏธ๋ž˜ ์ „์ž ์žฅ์น˜๋กœ์˜ 2D TMDs ๋ฌผ์งˆ์˜ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ๋‹ค๋ฃฌ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์žฅ์—์„œ๋Š” ๋Œ€๋ฉด์  ํ™”ํ•™์ฆ๊ธฐ์ „์ด(CVT) ๋ฐฉ๋ฒ•์œผ๋กœ ์„ฑ์žฅํ•œ PtSe2 ์™€ PtTe2 ์ธต์˜ ์„ฑ์žฅ๊ฑฐ๋™์— ๋Œ€ํ•˜์—ฌ ๊ด€์ฐฐ ๋ฐ ๊ทœ๋ช…ํ•˜์˜€์œผ๋ฉฐ, ์„ฑ์žฅ๊ฑฐ๋™์— ๋”ฐ๋ฅธ ์ „๊ธฐ์  ํŠน์„ฑ์˜ ๋ณ€ํ™”์— ๋Œ€ํ•˜์—ฌ ๊ด€์ฐฐํ•˜์—ฌ ๊ทธ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๊ทœ๋ช…ํ•˜์˜€๋‹ค. ์ €์˜จ ํ•ฉ์„ฑ ๊ณต์ •(400โ„ƒ)์—์„œ ์„ฑ์žฅํ•œ PtSe2์™€ PtTe2์ธต์€ ์ดˆ๊ธฐ ํ”Œ๋ž˜ํ‹ฐ๋„˜ (Platinum, Pt) ๋ง‰์˜ ๋‘๊ป˜๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์ˆ˜ํ‰์—์„œ ์ˆ˜์ง์œผ๋กœ์˜ ์ „์ด๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ด๋Ÿฌํ•œ PtSe2์ธต๊ณผ PtTe2 ์ธต์˜ ์„ฑ์žฅ๋ฐฉํ–ฅ ์ „์ด๋Š” ์„ฑ์žฅ ๊ณผ์ •์—์„œ ์ƒ์„ฑ๋œ ๋‚ด๋ถ€ ๋ณ€ํ˜•๋ฅ ์— ๋”ฐ๋ฅธ ์—ด์—ญํ•™์ , ๋ฌผ๋ฆฌ์  ์—๋„ˆ์ง€์— ๋”ฐ๋ผ ํ˜•์„ฑ๋˜๋ฉฐ ํˆฌ๊ณผ์ „์žํ˜„๋ฏธ๊ฒฝ(TEM)์„ ํ†ตํ•œ ๋ณ€ํ˜•๋ฅ  ๋ถ„์‚ฐ ๋ถ„์„์„ ํ†ตํ•ด ์ •๋Ÿ‰์ ์œผ๋กœ ์ž…์ฆํ•˜์˜€๋‹ค. ๋‘ ๋ฒˆ์งธ ์žฅ์—์„œ๋Š”, ๋ฌผ์„ ์‚ฌ์šฉํ•œ ๋Œ€๋ฉด์  2D TMDs ๋ฌผ์งˆ์˜ ๋ฐ•๋ฆฌ์™€ ๊ฒฐํ•ฉ์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์— ๋Œ€ํ•˜์—ฌ ํƒ๊ตฌํ•˜์˜€์œผ๋ฉฐ, ์ฒซ ๋ฒˆ์งธ๋กœ ๋ฌผ๋งŒ์„ ์‚ฌ์šฉํ•œ 2D TMDs ๋ฌผ์งˆ์˜ ๋ฐ•๋ฆฌ์™€ ๋‹ค์–‘ํ•œ ๊ธฐํŒ์œผ๋กœ์˜ ์ „์‚ฌ์— ๊ด€ํ•œ ์†์‰ฝ๊ณ  ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ์ ‘๊ทผ ๋ฐฉ์‹์„ ๋ณด๊ณ ํ•˜์˜€๋‹ค. ์ด ์ƒˆ๋กœ์šด ์ด์ฐจ์› ๋ฌผ์งˆ์˜ ํ†ตํ•ฉ ๋ฐฉ๋ฒ•์€ ๋‹ค๋ฅธ ํ™”ํ•™ ๋ฌผ์งˆ์„ ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ณ  ๋ฌผ๋งŒ ์‚ฌ์šฉํ•˜๋ฏ€๋กœ ์žฌ๋ฃŒ ์†์„ฑ ๋ณด์กด ๋ฐ ํ†ตํ•ฉ ํฌ๊ธฐ ๋Œ€๋ฉด์ ํ™” ์ธก๋ฉด์—์„œ ๊ธฐ์กด ์ ‘๊ทผ ๋ฐฉ์‹์— ๋น„ํ•ด ๋šœ๋ ทํ•œ ์ด์ ์„ ์ œ๊ณตํ•œ๋‹ค. ๋‘๋ฒˆ์งธ๋กœ๋Š”, ์ˆ˜์šฉ์„ฑ ๋‹จ๊ฒฐ์ • ์†Œ๊ธˆ ๊ธฐํŒ ์œ„์— ๋‹ค์–‘ํ•œ 2D TMDs ์ธต์ƒ ๋ฌผ์งˆ์„ ์ง์ ‘ ์„ฑ์žฅ์‹œํ‚ค๊ณ  ํ™”ํ•™์ ์œผ๋กœ ๋ฌดํ•ดํ•œ ๋ฐฉ์‹์œผ๋กœ ๋ฌผ ์†์œผ๋กœ ๋„ฃ์–ด ๊ธฐํŒ์„ ๋ฌผ์— ๋…น๊ฒŒ ํ•จ์œผ๋กœ์จ 2D TMDs ๋ฌผ์งˆ๋งŒ์„ ์ •ํ™•ํ•˜๊ฒŒ ๋ฐ•๋ฆฌํ•˜๋Š”๋ฐ ์„ฑ๊ณตํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ์ „์‚ฌ ๊ธฐํŒ์˜ ์ข…๋ฅ˜์™€ ๋ชจ์–‘์— ๊ตฌ์• ๋ฐ›์ง€ ์•Š์œผ๋ฉฐ, ๋‹ค์–‘ํ•œ ์ข…๋ฅ˜์˜ 2D TMDs ๋ฌผ์งˆ๋ฟ ์•„๋‹ˆ๋ผ ์ˆ˜์ง์œผ๋กœ ์ •๋ ฌ๋œ ๋ฌผ์งˆ์˜ ๋ฐ•๋ฆฌ์™€ ์ „์‚ฌ๋„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ๋˜ํ•œ ์ถ”๊ฐ€ ์„ฑ์žฅ์„ ์œ„ํ•ด ์›๋ž˜ ์†Œ๊ธˆ ๊ธฐํŒ์„ ์žฌํ™œ์šฉํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ๋†’์€ ๊ณต์ • ์ง€์† ๊ฐ€๋Šฅ์„ฑ๊ณผ ํ™•์žฅ์„ฑ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•˜์—ฌ ์‚ฐ์—…์ ์œผ๋กœ ์š”๊ตฌ๋˜๋Š” ๋Œ€๊ทœ๋ชจ์—์„œ์˜ ๋‹ค์–‘ํ•œ ๊ตฌ์กฐ์˜๋กœ์˜ ์žฅ์น˜๋ฅผ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•œ 2D TMDs ๊ตฌ์กฐ ๋ฌผ์งˆ์˜ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ์„ธ ๋ฒˆ์งธ ์žฅ์—์„œ๋Š”, ์ œํ•œ๋œ ๊ธฐ๊ณ„์  ๋ฌผ์„ฑ์˜ ํŠน์ง•์„ ๋‚˜ํƒ€๋‚ด๋Š” 2D TMDs ๋ฌผ์งˆ์„ ์ „๊ธฐ์ , ๊ตฌ์กฐ์ , ๊ด‘ํ•™์  ์„ฑ์งˆ์„ ์œ ์ง€ํ•˜๋ฉด์„œ ๋งค์šฐ ํฐ ๊ธฐ๊ณ„์  ์‹ ์ถ•์„ฑ์„ ๋‚˜ํƒ€๋‚ด๊ฒŒ ํ•˜๋Š” 3์ฐจ์› ๊ตฌ์กฐ๋กœ์˜ ๋ณ€ํ™˜์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ๋ณด๊ณ ํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ํ‚ค๋ฆฌ๊ฐ€๋ฏธ ํŒจํ„ฐ๋‹๊ณผ ๋ฑ€ ๋ชจ์–‘ ํŒจํ„ฐ๋‹์˜ ์ข…์ด ์ ˆ๋‹จ ์˜ˆ์ˆ ์—์„œ ์˜๊ฐ์„ ์–ป์€ ๋ณ€ํ˜• ๊ธฐ์ˆ ์„ ์‚ฌ์šฉํ•˜์—ฌ 2D TMDs ๋ฌผ์งˆ ๊ธฐ๋ฐ˜์˜ ์‹ ์ถ•์„ฑ ์ „์ž ์žฅ์น˜๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ˆ˜์ง์œผ๋กœ ์ •๋ ฌ๋œ ๊ธˆ์† PtTe2 ๋ฐ PtSe2 ๋ฌผ์งˆ์€ ๊ณ ๋ถ„์ž ๊ธฐํŒ์—์„œ ์ €์˜จ ์ง์ ‘ ์„ฑ์žฅ ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ณ ์„ฑ๋Šฅ ์ „์ž ํžˆํ„ฐ ๋ฐ 2000% ๊ฐ€ ๋„˜๋Š” ๊ณ ์‹ ์ถ•์„ฑ ์ „๋„์ฒด์— ์‚ฌ์šฉ๋˜์—ˆ์œผ๋ฉฐ, ๋ฐ˜๋„์ฒด ๋ฌผ์„ฑ์„ ๋‚˜ํƒ€๋‚ด๋Š” PtSe2 ๋ฐ MoS2 ๋ฌผ์งˆ์€ ๋Œ€๋ฉด์  ์‹ ์ถ•์„ฑ ์ „๊ณ„ ํšจ๊ณผ ํŠธ๋žœ์ง€์Šคํ„ฐ(FET) ์ „์ž ์žฅ์น˜ ๋ฐ ๊ณ ์„ฑ๋Šฅ ๊ฐ๋„๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ์ด์‚ฐํ™” ์งˆ์†Œ(NO2) ๊ฐ€์Šค ์„ผ์„œ์— ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. 3D ํ˜•ํƒœ๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ์ด๋Ÿฌํ•œ ๋‹ค๊ธฐ๋Šฅ 2D ์žฌ๋ฃŒ์˜ ๋ณ€ํ™˜์€ ์ƒˆ๋กœ์šด ์ „์ž ๋ฐ ๊ด‘์ „์ž ๊ธฐ์ˆ ์— 2D TMDs ๋ฌผ์งˆ์˜ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•œ ๊ธฐํšŒ๋ฅผ ์ œ๊ณตํ•œ๋‹ค.Abstract I Table of Contents V List of Figures XIII Chapter 1. Introduction 1 1.1. Introduce of 2D TMDs Materials 1 1.2. Structure of 2D TMDs Layers 4 1.2.1. Atomic Structure of 2D TMDs Layers 4 1.2.2. Growth Orientation of 2D TMDs Layers 8 1.3. Transfer and Integration of 2D TMDs Layer 9 1.4. Engineering the Structure of 2D TMDs to be Mechanically Reconfigurable 10 1.4.1. 3D texturing based on pre-structured polymeric templates. 11 1.4.2. Strain engineering of large-area 2D TMDs by origami and kirigami patterning. 12 1.5. Reference 14 Chapter 2. Growth Behavior and its Properties of 2D TMDs Layers 20 2.1. Growth Behavior and Properties of 2D PtSe2 Layers 20 2.1.1. Introduction 20 2.1.2. Experimental Section 22 2.1.2.1. 2D PtSe2 Layer Growth 22 2.1.2.2. TEM/STEM Characterization 23 2.1.2.3. Raman Characterization 23 2.1.2.4. Device Fabrication and Electrical Measurement 23 2.1.2.5. DFT Calculation 24 2.1.2.6. XPS Characterization 24 2.1.3. Results and Discussion 25 2.1.3.1. Orientation Controlled Growth of PtSe2 Layers 25 2.1.3.2. Atomic-scale Structural Analysis of Orientation Transition 29 2.1.3.3. Chemical and Electronic Structures of 2D PtSe2 Layers 32 2.1.3.4. DFT calculation of various morphology and orientation 2D PtSe2 38 2.1.3.5. The Growth Mechanism of Horizontal-to-vertical 2D Layer Transition in PtSe2 Layer 41 2.1.4. Conclusion 44 2.1.5. Reference 44 2.2. Growth Behavior and Properties of 2D PtTe2 Layers 50 2.2.1. Introduction 50 2.2.2. Experimental Method 52 2.2.2.1. Synthesis of 2D PtTe2 Layers 52 2.2.2.2. TEM Characterization and Analysis 53 2.2.2.3. XRD Characterization 53 2.2.2.4. Electrical Characterization 54 2.2.2.5. AFM Characterization 54 2.2.2.6. Computational Details 54 2.2.3. Results and Discussion 55 2.2.3.1. Growth and Structural Analysis of PtTe2 Layers 55 2.2.3.2. Orientation Controlled Growth and the Mechanism of Orientation Transition of PtTe2 Layers 58 2.2.3.3. DFT calculation for various morphology and orientation of 2D PtTe2 Layers 71 2.2.3.4. Electronic Structures of 2D PtTe2 Layers 74 2.2.4. Conclusion 79 2.2.5. Reference 79 Chapter 3. Transfer and Integration of 2D TMDs Layers 85 3.1. Water-assisted Transfer method for 2D TMDs Layers 85 3.1.1. Introduction 85 3.1.2. Experimental Method 87 3.1.2.1. Synthesis of 2D TMDs Films 87 3.1.2.2. Structural Characterization 87 3.1.3. Results and Discussion 88 3.1.3.1. Procedure of Water-assisted 2D TMDs Layer Integration 88 3.1.3.2. Demonstration of Water-assisted 2D TMDs Layer Transfer and Integration 91 3.1.3.3. Principle of Water-assisted 2D TMDs Layer Separation 94 3.1.4. Conclusion 99 3.1.5. Reference 99 3.2. Water Dissoluble Salt Substrates for 2D TMDs Layer 103 3.2.1. Introduction 103 3.2.2. Experimental Section 104 3.2.2.1. Growth of 2D TMD Layers 104 3.2.2.2. Delamination and Integration of 2D TMD Layers 105 3.2.2.3. Structural and Chemical Characterization 106 3.2.3. Results and Discussion 106 3.2.3.1. The Manufacturing Process of the Water-assisted 106 3.2.3.2. Structural and Chemical Analysis of 2D TMDs Layer grown on Salt Substrates 110 3.2.3.3. The Diversity of Salt Substrates for 2D TMDs Growth and Delamination 113 3.2.3.4. The Heterogeneous Integration of Multiple 2D TMDs Layers 116 3.2.4. Conclusion 119 3.2.5. Reference 119 Chapter 4. Application to Stretchable Future Electronics 125 4.1. High Stretchable Electronic Device 125 4.1.1. Introduction 125 4.1.2. Experimental Method 127 4.1.2.1. Preparation of a Kirigami-Patterned PI Substrate 127 4.1.2.2. Two-Dimensional PtSe2 Layer Growth 128 4.1.2.3. Electrical and Optoelectrical Characterization 128 4.1.2.4. XPS and TEM/STEM Characterization 129 4.1.3. Results and Discussion 129 4.1.3.1. The Manufacturing Process of High Stretchable 2D PtSe2/PI Kirigami Device 129 4.1.3.2. Structural and Chemical Analysis of 2D PtSe2 Layers 132 4.1.3.3. The Mechanical Properties of 2D PtSe2/PI Device 135 4.1.3.4. FEM Simulation for the Optimization of Device Design 140 4.1.3.5. Stretchable FET Device of 2D PtSe2/PI Layer 144 4.1.4. Conclusion 147 4.1.5. Reference 147 4.2. Stretchable Electronic Heater of 2D PtTe2 Layers 152 4.2.1. Introduction 152 4.2.2. Experimental Method 154 4.2.2.1. 2D PtTe2 Synthesis 154 4.2.2.2. Crystal Structure Characterization 155 4.2.2.3. Raman and Electrical Characterization 155 4.2.2.4. Heating performance Test 156 4.2.2.5. Kirigami-pattern Fabrication and Finite Element Method 156 4.2.3. Results and Discussion 157 4.2.3.1. 2D PtTe2 Layer Growth 157 4.2.3.2. Electrical and electrothermal properties of 2D PtTe2 layer 160 4.2.3.3. Flexibility of 2D PtTe2 Layer on PI Substrate 167 4.2.3.4. Kirigami-patterned stretchable heater based on 2D PtTe2 170 4.2.4. Conclusion 175 4.2.5. Reference 175 4.3. Stretchable High-Performance Gas Sensor 179 4.3.1. Introduction 179 4.3.2. Experimental Method 181 4.3.2.1. CVD Growth of VA-2D MoS2 Layers 181 4.3.2.2. VA-2D MoS2 Layer Transfer and Integration Process 181 4.3.2.3. AFM, UVVis, Raman, XPS, and TEM Characterizations 182 4.3.2.4. Device Fabrication and Electrical/Optical Characterization 182 4.3.2.5. Gas Sensing Characterization 182 4.3.2.6. FEM Simulation and DFT Calculation 183 4.3.3. Results and Discussion 184 4.3.3.1. The Sequential Growth, Integration, and Patterning Process of the VA-2D MoS2 Layers 184 4.3.3.2. Structural and Chemical Analysis of 2D VA-MoS2 Layers 188 4.3.3.3. Gas Sensing Performance of Serpentine VA-MoS2 Layers 192 4.3.3.4. FEM Simulation for Mechanical Stretching 198 4.3.3.5. DFT Calculations for the Superiority of VA-2D MoS2 Layers for NO2 Gas Sensing 201 4.3.4. Conclusion 205 4.3.5. Reference 205 Chapter 5. Total Conclusion 212 Abstract in Korean 215Docto
    • โ€ฆ
    corecore