21 research outputs found

    J Biomed Inform

    Get PDF
    IntroductionSeveral studies conducted in sub-Saharan Africa (SSA) have shown that routine clinical data in HIV clinics often have errors. Lack of structured and coded documentation of diagnosis of AIDS defining illnesses (ADIs) can compromise data quality and decisions made on clinical care.MethodsWe used a structured framework to derive a reference set of concepts and terms used to describe ADIs. The four sources used were: (i) CDC/Accenture list of opportunistic infections, (ii) SNOMED Clinical Terms (SNOMED CT), (iii) Focus Group Discussion (FGD) among clinicians and nurses attending to patients at a referral provincial hospital in western Kenya, and (iv) chart abstraction from the Maternal Child Health (MCH) and HIV clinics at the same hospital. Using the January 2014 release of SNOMED CT, concepts were retrieved that matched terms abstracted from approach iii & iv, and the content coverage assessed. Post-coordination matching was applied when needed.ResultsThe final reference set had 1054 unique ADI concepts which were described by 1860 unique terms. Content coverage of SNOMED CT was high (99.9% with pre-coordinated concepts; 100% with post-coordination). The resulting reference set for ADIs was implemented as the interface terminology on OpenMRS data entry forms.ConclusionDifferent sources demonstrate complementarity in the collection of concepts and terms for an interface terminology. SNOMED CT provides a high coverage in the domain of ADIs. Further work is needed to evaluate the effect of the interface terminology on data quality and quality of care.2015GH000048-04/GH/CGH CDC HHS/United StatesU01 GH000048/GH/CGH CDC HHS/United StatesPEPFAR/United States26184057PMC4987091668

    Clinical Terminology in Patient Health Record System - SNOMED CT Overview

    Get PDF
    Background of study: Patient Health Record System (PHRS) is used byphysicians for capturing patient medical records in electronic media.Standardization in PHRS arises a major challenge due to its complexities. Theused of clinical terminology is needed in order to facilitate more expressiveclinical data input, provide unambiguous encoding and support the exchange ofclinical information. One of highly specialized clinical terminology is SNOMEDCT(Systematized Nomenclature of Medicine Clinical Terms) that able to encodeclinical data, and contains concepts that linked to clinical knowledge to enableaccurate recording of data without ambiguity. The aims of this paper is to discussthe use of clinical terminology in PHRS and identifying importance factors forapplying clinical terminology in healthcare services.Method: This study used review of literature in order to find the use of clinicalterminology in patient health record system by reviewing current used of clinicalterminology.Result: The result of the study found that clinical terminology supportsinformation exchange between healthcare providers

    Clinical Terminology in Patient Health Record System - SNOMED CT Overview

    Get PDF
    Background of study: Patient Health Record System (PHRS) is used by physicians for capturing patient medical records in electronic media. Standardization in PHRS arises a major challenge due to its complexities. The used of clinical terminology is needed in order to facilitate more expressive clinical data input, provide unambiguous encoding and support the exchange of clinical information. One of highly specialized clinical terminology is SNOMED CT(Systematized Nomenclature of Medicine Clinical Terms) that able to encode clinical data, and contains concepts that linked to clinical knowledge to enable accurate recording of data without ambiguity. The aims of this paper is to discuss the use of clinical terminology in PHRS and identifying importance factors for applying clinical terminology in healthcare services. Method: This study used review of literature in order to find the use of clinical terminology in patient health record system by reviewing current used of clinical terminology. Result: The result of the study found that clinical terminology supports information exchange between healthcare provider

    An experimental study and evaluation of a new architecture for clinical decision support - integrating the openEHR specifications for the Electronic Health Record with Bayesian Networks

    Get PDF
    Healthcare informatics still lacks wide-scale adoption of intelligent decision support methods, despite continuous increases in computing power and methodological advances in scalable computation and machine learning, over recent decades. The potential has long been recognised, as evidenced in the literature of the domain, which is extensively reviewed. The thesis identifies and explores key barriers to adoption of clinical decision support, through computational experiments encompassing a number of technical platforms. Building on previous research, it implements and tests a novel platform architecture capable of processing and reasoning with clinical data. The key components of this platform are the now widely implemented openEHR electronic health record specifications and Bayesian Belief Networks. Substantial software implementations are used to explore the integration of these components, guided and supplemented by input from clinician experts and using clinical data models derived in hospital settings at Moorfields Eye Hospital. Data quality and quantity issues are highlighted. Insights thus gained are used to design and build a novel graph-based representation and processing model for the clinical data, based on the openEHR specifications. The approach can be implemented using diverse modern database and platform technologies. Computational experiments with the platform, using data from two clinical domains – a preliminary study with published thyroid metabolism data and a substantial study of cataract surgery – explore fundamental barriers that must be overcome in intelligent healthcare systems developments for clinical settings. These have often been neglected, or misunderstood as implementation procedures of secondary importance. The results confirm that the methods developed have the potential to overcome a number of these barriers. The findings lead to proposals for improvements to the openEHR specifications, in the context of machine learning applications, and in particular for integrating them with Bayesian Networks. The thesis concludes with a roadmap for future research, building on progress and findings to date

    A Two-Level Identity Model To Support Interoperability of Identity Information in Electronic Health Record Systems.

    Get PDF
    The sharing and retrieval of health information for an electronic health record (EHR) across distributed systems involves a range of identified entities that are possible subjects of documentation (e.g., specimen, clinical analyser). Contemporary EHR specifications limit the types of entities that can be the subject of a record to health professionals and patients, thus limiting the use of two level models in healthcare information systems that contribute information to the EHR. The literature describes several information modelling approaches for EHRs, including so called “two level models”. These models differ in the amount of structure imposed on the information to be recorded, but they generally require the health documentation process for the EHR to focus exclusively on the patient as the subject of care and this definition is often a fixed one. In this thesis, the author introduces a new identity modelling approach to create a generalised reference model for sharing archetype-constrained identity information between diverse identity domains, models and services, while permitting reuse of published standard-based archetypes. The author evaluates its use for expressing the major types of existing demographic reference models in an extensible way, and show its application for standards-compliant two-level modelling alongside heterogeneous demographics models. This thesis demonstrates how the two-level modelling approach that is used for EHRs could be adapted and reapplied to provide a highly-flexible and expressive means for representing subjects of information in allied health settings that support the healthcare process, such as the laboratory domain. By relying on the two level modelling approach for representing identity, the proposed design facilitates cross-referencing and disambiguation of certain demographics standards and information models. The work also demonstrates how it can also be used to represent additional clinical identified entities such as specimen and order as subjects of clinical documentation

    Enhancing the interactivity of a clinical decision support system by using knowledge engineering and natural language processing

    Get PDF
    Mental illness is a serious health problem and it affects many people. Increasingly,Clinical Decision Support Systems (CDSS) are being used for diagnosis and it is important to improve the reliability and performance of these systems. Missing a potential clue or a wrong diagnosis can have a detrimental effect on the patient's quality of life and could lead to a fatal outcome. The context of this research is the Galatean Risk and Safety Tool (GRiST), a mental-health-risk assessment system. Previous research has shown that success of a CDSS depends on its ease of use, reliability and interactivity. This research addresses these concerns for the GRiST by deploying data mining techniques. Clinical narratives and numerical data have both been analysed for this purpose.Clinical narratives have been processed by natural language processing (NLP)technology to extract knowledge from them. SNOMED-CT was used as a reference ontology and the performance of the different extraction algorithms have been compared. A new Ensemble Concept Mining (ECM) method has been proposed, which may eliminate the need for domain specific phrase annotation requirements. Word embedding has been used to filter phrases semantically and to build a semantic representation of each of the GRiST ontology nodes.The Chi-square and FP-growth methods have been used to find relationships between GRiST ontology nodes. Interesting patterns have been found that could be used to provide real-time feedback to clinicians. Information gain has been used efficaciously to explain the differences between the clinicians and the consensus risk. A new risk management strategy has been explored by analysing repeat assessments. A few novel methods have been proposed to perform automatic background analysis of the patient data and improve the interactivity and reliability of GRiST and similar systems

    Preface

    Get PDF

    Tuberculosis

    Get PDF
    Asserts that despite progress in controlling tuberculosis (TB), the decline in incidence has been disappointing, pointing to the need for new strategies and more effective tools. HIV/AIDS is one factor that challenges effective control of TB, especially in Southern African countries. Three key elements are needed to achieve effective TB control and to meet the Sustainable Development Goals: (1) early and accurate diagnosis and drug-sensitivity testing, (2) patient access to and completion of effective treatment, and (3) prevention of progression from latent infection to disease. Prevention requires vaccination and screening of individual at high risk as well as interventions such as air disinfection and the use of masks and respirators in hospitals and other congregate settings. Recommendations stress the need to strengthen health systems in high-burden countries by emphasizing community-based care over hospital care; to improve information systems to ensure patient adherence and manage medication supply chains; and to invest in research to develop the necessary interventions. Fundamentally, current global TB control strategies must undergo revision and receive significant research funding

    Med-e-Tel 2013

    Get PDF
    corecore